Suppr超能文献

超分辨率图像共定位的无偏稳健分析。

Unbiased and robust analysis of co-localization in super-resolution images.

机构信息

Department of Mathematics, 5784University of New Orleans, New Orleans, LA, USA.

Department of Immunology, 5417St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Stat Methods Med Res. 2022 Aug;31(8):1484-1499. doi: 10.1177/09622802221094133. Epub 2022 Apr 21.

Abstract

Spatial data from high-resolution images abound in many scientific disciplines. For example, single-molecule localization microscopy, such as stochastic optical reconstruction microscopy, provides super-resolution images to help scientists investigate co-localization of proteins and hence their interactions inside cells, which are key events in living cells. However, there are few accurate methods for analyzing co-localization in super-resolution images. The current methods and software are prone to produce false-positive errors and are restricted to only 2-dimensional images. In this paper, we develop a novel statistical method to effectively address the problems of unbiased and robust quantification and comparison of protein co-localization for multiple 2- and 3-dimensional image datasets. This method significantly improves the analysis of protein co-localization using super-resolution image data, as shown by its excellent performance in simulation studies and an analysis of co-localization of protein light chain 3 and lysosomal-associated membrane protein 1 in cell autophagy. Moreover, this method is directly applicable to co-localization analyses in other disciplines, such as diagnostic imaging, epidemiology, environmental science, and ecology.

摘要

高分辨率图像中的空间数据在许多科学领域中都很丰富。例如,单分子定位显微镜,如随机光学重建显微镜,提供超分辨率图像,帮助科学家研究蛋白质的共定位及其在细胞内的相互作用,这是活细胞中的关键事件。然而,用于分析超分辨率图像中共定位的准确方法很少。当前的方法和软件容易产生假阳性错误,并且仅局限于 2 维图像。在本文中,我们开发了一种新颖的统计方法,可有效地解决多个 2 维和 3 维图像数据集的蛋白质共定位的无偏和稳健量化和比较问题。该方法通过在细胞自噬中蛋白质 LC3 和溶酶体相关膜蛋白 1 的共定位的分析以及模拟研究中优异的性能,显著改善了使用超分辨率图像数据的蛋白质共定位分析。此外,该方法可直接应用于其他领域,如诊断成像、流行病学、环境科学和生态学中的共定位分析。

相似文献

1
Unbiased and robust analysis of co-localization in super-resolution images.超分辨率图像共定位的无偏稳健分析。
Stat Methods Med Res. 2022 Aug;31(8):1484-1499. doi: 10.1177/09622802221094133. Epub 2022 Apr 21.
2
Artifacts in single-molecule localization microscopy.单分子定位显微镜中的伪影。
Histochem Cell Biol. 2015 Aug;144(2):123-31. doi: 10.1007/s00418-015-1340-4. Epub 2015 Jul 3.

本文引用的文献

5
Correlation analysis framework for localization-based superresolution microscopy.基于定位的超分辨率显微镜的相关分析框架。
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3219-3224. doi: 10.1073/pnas.1711314115. Epub 2018 Mar 12.
10
Quantitative analysis of single-molecule superresolution images.单分子超分辨率图像的定量分析。
Curr Opin Struct Biol. 2014 Oct;28:112-21. doi: 10.1016/j.sbi.2014.08.008. Epub 2014 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验