Liu Xueyan, Komladzei Stephan, Guy Clifford
Department of Mathematics, University of New Orleans, New Orleans, LA, USA.
Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA.
J Appl Stat. 2024 Apr 29;51(16):3333-3349. doi: 10.1080/02664763.2024.2346828. eCollection 2024.
Motivated by the high demand for co-localization analysis methods for super-resolution microscopy images which are featured with nanoscale precise locational information of molecules, this paper establishes a novel correlation-based method, KCBC, named after the Coordinated-Based Colocalization (CBC) method proposed by Malkusch in 2012, by using bivariate Ripley's functions. The local KCBC values are to quantify the local spatial co-localization of molecules between two species by measuring the correlation of bivariate Ripley's functions over equal-area concentric rings around the base species within a near distance. The mean of local KCBC values is proposed to quantify the co-localization degree of cross-channel to base-channel molecules for the whole image. It could effectively correct the false positives with reduced variance and increased power within the user-defined proximity size. We provide extensive simulation studies under different scenarios to demonstrate the unbiasedness of the KCBC method, and its ability to filter noise signals and random over-counting. Our real data application for super-resolution mitochondria image data illustrates the applicability of our methods with increased effectiveness and power.
由于对超分辨率显微镜图像的共定位分析方法有很高的需求,这些图像具有分子的纳米级精确位置信息,本文建立了一种新的基于相关性的方法KCBC,它以马尔库施在2012年提出的基于坐标的共定位(CBC)方法命名,通过使用双变量里普利函数。局部KCBC值用于通过测量双变量里普利函数在基础物种周围近距离内等面积同心环上的相关性,来量化两个物种之间分子的局部空间共定位。提出局部KCBC值的平均值来量化整个图像中跨通道到基础通道分子的共定位程度。它可以在用户定义的邻近尺寸内有效校正误报,同时降低方差并提高功效。我们在不同场景下进行了广泛的模拟研究,以证明KCBC方法的无偏性及其过滤噪声信号和随机过度计数的能力。我们对超分辨率线粒体图像数据的实际数据应用说明了我们方法的适用性,具有更高的有效性和功效。