Suppr超能文献

原位嵌入多孔富氮碳纳米管中的碳化钼电催化剂促进钠硫电池的快速动力学

Molybdenum Carbide Electrocatalyst In Situ Embedded in Porous Nitrogen-Rich Carbon Nanotubes Promotes Rapid Kinetics in Sodium-Metal-Sulfur Batteries.

作者信息

Hao Hongchang, Wang Yixian, Katyal Naman, Yang Guang, Dong Hui, Liu Pengcheng, Hwang Sooyeon, Mantha Jagannath, Henkelman Graeme, Xu Yixin, Boscoboinik Jorge Anibal, Nanda Jagjit, Mitlin David

机构信息

Materials Science and Engineering Program and Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA.

Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Adv Mater. 2022 Jul;34(26):e2106572. doi: 10.1002/adma.202106572. Epub 2022 May 23.

Abstract

This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo C@PCNT-S). Quasi-solid-state phase transformation to Na S is promoted in carbonate electrolyte, with in situ time-resolved Raman, X-ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo C@PCNT-S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g at 1 A g , 818 mAh g at 3 A g , and 621 mAh g at 5 A g . The cells deliver superior cycling stability, retaining 650 mAh g after 1000 cycles at 1.5 A g , corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm ) also show cycling stability. Density functional theory demonstrates that formation energy of Na S (1 ≤ x ≤ 4) on surface of MoC/Mo C is significantly lowered compared to analogous redox in liquid. Strong binding of Na S (1 ≤ x ≤ 4) on MoC/Mo C surfaces results from charge transfer between the sulfur and Mo sites on carbides' surface.

摘要

这是关于用于硫基钠金属电池的碳化钼基电催化剂的首份报告。MoC/Mo₂C原位生长在氮掺杂碳纳米管上,同时形成大量纳米孔隙。硫浸渍(50 wt% S)产生了独特的三相结构,称为碳化钼 - 多孔碳纳米管主体(MoC/Mo₂C@PCNT - S)。在碳酸盐电解质中促进了向Na₂Sₓ的准固态相变,原位时间分辨拉曼光谱、X射线光电子能谱和光学分析表明可溶性多硫化物极少。MoC/Mo₂C@PCNT - S阴极展现出文献中最具前景的倍率性能特征之一,在1 A g⁻¹时实现987 mAh g⁻¹,在3 A g⁻¹时为818 mAh g⁻¹,在5 A g⁻¹时为621 mAh g⁻¹。该电池具有卓越的循环稳定性,在1.5 A g⁻¹下1000次循环后保持650 mAh g⁻¹,对应每循环0.028%的容量衰减。高质量负载阴极(64 wt% S,12.7 mg cm⁻²)也显示出循环稳定性。密度泛函理论表明,与液体中的类似氧化还原反应相比,MoC/Mo₂C表面上Na₂Sₓ(1 ≤ x ≤ 4)的形成能显著降低。Na₂Sₓ(1 ≤ x ≤ 4)在MoC/Mo₂C表面的强结合源于碳化物表面硫和钼位点之间的电荷转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验