Suppr超能文献

双核:肽和磷酸酯水解的混杂催化活性。

Promiscuous Catalytic Activity of a Binuclear : Peptide and Phosphoester Hydrolyses.

机构信息

Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States.

出版信息

J Chem Inf Model. 2022 May 23;62(10):2466-2480. doi: 10.1021/acs.jcim.2c00214. Epub 2022 Apr 22.

Abstract

In this study, chemical promiscuity of a binuclear metallohydrolase aminopeptidase (AP) has been investigated using DFT calculations. AP catalyzes two diverse reactions, peptide and phosphoester hydrolyses, using its binuclear (Zn-Zn) core. On the basis of the experimental information, mechanisms of these reactions have been investigated utilizing leucine -nitro aniline (Leu-NA) and bis(4-nitrophenyl) phosphate (BNPP) as the substrates. The computed barriers of 16.5 and 16.8 kcal/mol for the most plausible mechanisms proposed by the DFT calculations are in good agreement with the measured values of 13.9 and 18.3 kcal/mol for the Leu-NA and BNPP hydrolyses, respectively. The former was found to occur through the transfer of two protons, while the latter with only one proton transfer. They are in line with the experimental observations. The cleavage of the peptide bond was the rate-determining process for the Leu-NA hydrolysis. However, the creation of the nucleophile and its attack on the electrophile phosphorus atom was the rate-determining step for the BNPP hydrolysis. These calculations showed that the chemical nature of the substrate and its binding mode influence the nucleophilicity of the metal bound hydroxyl nucleophile. Additionally, the nucleophilicity was found to be critical for the Leu-NA hydrolysis, whereas double Lewis acid activation was needed for the BNPP hydrolysis. That could be one of the reasons why peptide hydrolysis can be catalyzed by both mononuclear and binuclear metal cofactors containing hydrolases, while phosphoester hydrolysis is almost exclusively by binuclear metallohydrolases. These results will be helpful in the development of versatile catalysts for chemically distinct hydrolytic reactions.

摘要

在这项研究中,使用 DFT 计算研究了双核金属水解酶 - 氨肽酶(AP)的化学混杂性。AP 利用其双核(Zn-Zn)核心催化两种不同的反应,肽和磷酸酯水解。根据实验信息,利用亮氨酸-硝基苯胺(Leu-NA)和双(4-硝基苯基)磷酸酯(BNPP)作为底物,研究了这些反应的机制。DFT 计算提出的最合理机制的计算出的 16.5 和 16.8 kcal/mol 的障碍与 Leu-NA 和 BNPP 水解的测量值 13.9 和 18.3 kcal/mol 非常吻合。前者被发现通过两个质子的转移发生,而后者只有一个质子转移。这与实验观察结果一致。肽键的断裂是 Leu-NA 水解的速控步骤。然而,亲核试剂的形成及其对亲电磷原子的攻击是 BNPP 水解的速控步骤。这些计算表明,底物的化学性质及其结合模式会影响金属结合的羟基亲核试剂的亲核性。此外,亲核性对 Leu-NA 水解至关重要,而 BNPP 水解需要双路易斯酸激活。这可能是为什么肽水解可以被含有水解酶的单核和双核金属辅因子催化,而磷酸酯水解几乎完全由双核金属水解酶催化的原因之一。这些结果将有助于开发用于具有化学差异的水解反应的多功能催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验