Shi Shaolei, Zhang Zhe, Li Bingjie, Zhang Shengli, Fang Lingzhao
College of Animal Science and Technology, China Agricultural University, Beijing, China.
Department of Animal Breeding and genetics, College of Animal Science, South China Agricultural University (SCAU), Guangzhou, China.
Methods Mol Biol. 2022;2467:329-340. doi: 10.1007/978-1-0716-2205-6_11.
Due to the rapid development of high-throughput sequencing technology, we can easily obtain not only the genetic variants at the whole-genome sequence level (e.g., from 1000 Genomes project and 1000 Bull Genomes project), but also a wide range of functional annotations (e.g., enhancers and promoters from ENCODE, FAANG, and FarmGTEx projects) across a wide range of tissues, cell types, developmental stages, and environmental conditions. This huge amount of information leads to a revolution in studying genetics and genomics of complex traits in humans, livestock, and plant species. In this chapter, we focused on and reviewed the genomic prediction methods that incorporate external biological information into genomic prediction, such as sequence ontology, linkage disequilibrium (LD) of SNPs, quantitative trait loci (QTL), and multi-layer omics data (e.g., transcriptome, epigenome, and microbiome).
由于高通量测序技术的快速发展,我们不仅能够轻松获得全基因组序列水平上的遗传变异(例如来自千人基因组计划和千牛基因组计划),还能获得广泛组织、细胞类型、发育阶段和环境条件下的各种功能注释(例如来自ENCODE、FAANG和FarmGTEx计划的增强子和启动子)。这些海量信息引发了人类、家畜和植物物种复杂性状遗传学和基因组学研究的一场革命。在本章中,我们重点关注并综述了将外部生物学信息纳入基因组预测的基因组预测方法,如序列本体、单核苷酸多态性(SNP)的连锁不平衡(LD)、数量性状位点(QTL)以及多层组学数据(例如转录组、表观基因组和微生物组)。