Suppr超能文献

将基因注释纳入复杂性状的基因组预测

Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes.

作者信息

Gao Ning, Martini Johannes W R, Zhang Zhe, Yuan Xiaolong, Zhang Hao, Simianer Henner, Li Jiaqi

机构信息

National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Animal Breeding and Genetics Group, University of Goettingen, 37075, Germany.

出版信息

Genetics. 2017 Oct;207(2):489-501. doi: 10.1534/genetics.117.300198. Epub 2017 Aug 24.

Abstract

Today, genomic prediction (GP) is an established technology in plant and animal breeding programs. Current standard methods are purely based on statistical considerations but do not make use of the abundant biological knowledge, which is easily available from public databases. Major questions that have to be answered before biological prior information can be used routinely in GP approaches are which types of information can be used, and at which points they can be incorporated into prediction methods. In this study, we propose a novel strategy to incorporate gene annotation into GP of complex phenotypes by defining haploblocks according to gene positions. Haplotype effects are then modeled as categorical or as numerical allele dosage variables. The underlying concept of this approach is to build the statistical model on variables representing the biologically functional units. We evaluate the new methods with data from a heterogeneous stock mouse population, the (), and a rice breeding population from the Rice Diversity Panel. Our results show that using gene annotation to define haploblocks often leads to a comparable, but for some traits to a higher, predictive ability compared to SNP-based models or to haplotype models that do not use gene annotation information. Modeling gene interaction effects can further improve predictive ability. We also illustrate that the additional use of markers that have not been mapped to any gene in a second separate relatedness matrix does in many cases not lead to a relevant additional increase in predictive ability when the first matrix is based on haploblocks defined with gene annotation data, suggesting that intergenic markers only provide redundant information on the considered data sets. Therefore, gene annotation information seems to be appropriate to perceive the importance of DNA segments. Finally, we discuss the effects of gene annotation quality, marker density, and linkage disequilibrium on the performance of the new methods. To our knowledge, this is the first work that incorporates epistatic interaction or gene annotation into haplotype-based prediction approaches.

摘要

如今,基因组预测(GP)在动植物育种计划中已是一项成熟的技术。当前的标准方法完全基于统计考量,却未利用可轻易从公共数据库获取的丰富生物学知识。在生物学先验信息能够在GP方法中常规使用之前,必须回答的主要问题是可以使用哪些类型的信息,以及在哪些环节将这些信息纳入预测方法。在本研究中,我们提出了一种新策略,即通过根据基因位置定义单倍型块,将基因注释纳入复杂表型的GP中。然后将单倍型效应建模为分类变量或数值等位基因剂量变量。该方法的基本概念是在代表生物学功能单元的变量上构建统计模型。我们使用来自一个异质品系小鼠群体()的数据以及水稻多样性面板的水稻育种群体数据对新方法进行了评估。我们的结果表明,与基于单核苷酸多态性(SNP)的模型或不使用基因注释信息的单倍型模型相比,利用基因注释来定义单倍型块通常会带来相当的预测能力,对于某些性状而言甚至预测能力更高。对基因相互作用效应进行建模可以进一步提高预测能力。我们还表明,当第一个相关矩阵基于用基因注释数据定义的单倍型块时,在第二个单独的相关矩阵中额外使用未映射到任何基因的标记,在许多情况下并不会导致预测能力有显著的额外提高,这表明基因间标记在考虑的数据集中仅提供冗余信息。因此,基因注释信息似乎适合于认识DNA片段的重要性。最后,我们讨论了基因注释质量、标记密度和连锁不平衡对新方法性能的影响。据我们所知,这是第一项将上位性相互作用或基因注释纳入基于单倍型的预测方法的工作。

相似文献

1
Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes.将基因注释纳入复杂性状的基因组预测
Genetics. 2017 Oct;207(2):489-501. doi: 10.1534/genetics.117.300198. Epub 2017 Aug 24.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验