Siritanaratkul Bhavin, Forster Mark, Greenwell Francesca, Sharma Preetam K, Yu Eileen H, Cowan Alexander J
Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.
Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
J Am Chem Soc. 2022 May 4;144(17):7551-7556. doi: 10.1021/jacs.1c13024. Epub 2022 Apr 22.
The scaling-up of electrochemical CO reduction requires circumventing the CO loss as carbonates under alkaline conditions. Zero-gap cell configurations with a reverse-bias bipolar membrane (BPM) represent a possible solution, but the catalyst layer in direct contact with the acidic environment of a BPM usually leads to H evolution dominating. Here we show that using acid-tolerant Ni molecular electrocatalysts selective (>60%) CO reduction can be achieved in a zero-gap BPM device using a pure water and CO feed. At a higher current density (100 mA cm), CO selectivity decreases, but was still >30%, due to reversible product inhibition. This study demonstrates the importance of developing acid-tolerant catalysts for use in large-scale CO reduction devices.
扩大电化学CO还原规模需要避免在碱性条件下以碳酸盐形式损失CO。具有反向偏置双极膜(BPM)的零间隙电池配置是一种可能的解决方案,但与BPM酸性环境直接接触的催化剂层通常会导致析氢占主导。在此我们表明,使用耐酸镍分子电催化剂,在使用纯水和CO进料的零间隙BPM装置中可以实现选择性(>60%)的CO还原。在较高电流密度(100 mA cm)下,由于可逆的产物抑制,CO选择性降低,但仍>30%。这项研究证明了开发用于大规模CO还原装置的耐酸催化剂的重要性。