Suppr超能文献

在 1000 mA·cm-2 下使用物理互锁双极膜进行连续氨电合成

Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm.

机构信息

Department of Chemical Engineering, Tsinghua University, Beijing, China.

出版信息

Nat Commun. 2023 Mar 23;14(1):1619. doi: 10.1038/s41467-023-37273-7.

Abstract

Electrosynthesis of ammonia from nitrate reduction receives extensive attention recently for its relatively mild conditions and clean energy requirements, while most existed electrochemical strategies can only deliver a low yield rate and short duration for the lack of stable ion exchange membranes at high current density. Here, a bipolar membrane nitrate reduction process is proposed to achieve ionic balance, and increasing water dissociation sites is delivered by constructing a three-dimensional physically interlocked interface for the bipolar membrane. This design simultaneously boosts ionic transfer and interfacial stability compared to traditional ones, successfully reducing transmembrane voltage to 1.13 V at up to current density of 1000 mA cm. By combining a Co three-dimensional nanoarray cathode designed for large current and low concentration utilizations, a continuous and high yield bipolar membrane reactor for NH electrosynthesis realized a stable electrolysis at 1000 mA cm for over 100 h, Faradaic efficiency of 86.2% and maximum yield rate of 68.4 mg h cm with merely 2000 ppm NO alkaline electrolyte. These results show promising potential for artificial nitrogen cycling in the near future.

摘要

近年来,由于其相对温和的条件和清洁能源需求,硝酸盐还原合成氨受到了广泛关注,而大多数现有的电化学策略由于缺乏在高电流密度下稳定的离子交换膜,只能提供低产率和短持续时间。在这里,提出了一种双极膜硝酸盐还原过程来实现离子平衡,并通过构建三维物理互锁界面来增加水离解位点。与传统设计相比,该设计同时提高了离子迁移率和界面稳定性,成功地将跨膜电压降低至 1.13V,电流密度高达 1000mA/cm。通过结合专为大电流和低浓度利用而设计的 Co 三维纳米阵列阴极,实现了用于 NH 电合成的连续和高产率双极膜反应器,在 1000mA/cm 下稳定电解超过 100 小时,法拉第效率为 86.2%,最大产率为 68.4mg/h/cm,仅使用 2000ppm 的 NO 碱性电解质。这些结果表明,在不久的将来,人工氮循环具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc9b/10036611/52a7605514a4/41467_2023_37273_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验