Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
J Biol Chem. 2022 Jun;298(6):101959. doi: 10.1016/j.jbc.2022.101959. Epub 2022 Apr 20.
The metabolite of vitamin A, retinoic acid (RA), is known to affect synaptic plasticity in the nervous system and to play an important role in learning and memory. A ubiquitous mechanism by which neuronal plasticity develops in the nervous system is through modulation of voltage-gated Ca (Ca) and voltage-gated K channels. However, how retinoids might regulate the activity of these channels has not been determined. Here, we show that RA modulates neuronal firing by inducing spike broadening and complex spiking in a dose-dependent manner in peptidergic and dopaminergic cell types. Using patch-clamp electrophysiology, we show that RA-induced complex spiking is activity dependent and involves enhanced inactivation of delayed rectifier voltage-gated K channels. The prolonged depolarizations observed during RA-modulated spiking lead to an increase in Ca influx through Ca channels, though we also show an opposing effect of RA on the same neurons to inhibit Ca influx. At physiological levels of Ca, this inhibition is specific to Ca2 (not Ca1) channels. Examining the interaction between the spike-modulating effects of RA and its inhibition of Ca channels, we found that inhibition of Ca2 channels limits the Ca influx resulting from spike modulation. Our data thus provide novel evidence to suggest that retinoid signaling affects both delayed rectifier K channels and Ca channels to fine-tune Ca influx through Ca2 channels. As these channels play important roles in synaptic function, we propose that these modulatory effects of retinoids likely contribute to synaptic plasticity in the nervous system.
维生素 A 的代谢产物视黄酸 (RA) 已知会影响神经系统中的突触可塑性,并在学习和记忆中发挥重要作用。神经元可塑性在神经系统中发展的一种普遍机制是通过调节电压门控 Ca(Ca)和电压门控 K 通道。然而,视黄酸如何调节这些通道的活性尚未确定。在这里,我们表明 RA 通过以剂量依赖的方式诱导肽能和多巴胺能细胞类型中的尖峰展宽和复杂尖峰,来调节神经元的放电。使用膜片钳电生理学,我们表明 RA 诱导的复杂尖峰是活动依赖性的,涉及延迟整流电压门控 K 通道的增强失活。在 RA 调节的尖峰期间观察到的延长去极化导致通过 Ca 通道的 Ca 流入增加,尽管我们还表明 RA 对同一神经元具有相反的抑制 Ca 流入的作用。在生理 Ca 水平下,这种抑制作用是特异性针对 Ca2(不是 Ca1)通道的。检查 RA 的尖峰调节作用与其对 Ca 通道的抑制作用之间的相互作用,我们发现 Ca2 通道的抑制作用限制了尖峰调节产生的 Ca 流入。因此,我们的数据提供了新的证据表明,视黄酸信号会影响延迟整流 K 通道和 Ca 通道,以微调通过 Ca2 通道的 Ca 流入。由于这些通道在突触功能中发挥重要作用,我们提出这些视黄酸的调节作用可能有助于神经系统中的突触可塑性。