Rixen Jöran, Eliasson Benedikt, Hentze Benjamin, Muders Thomas, Putensen Christian, Leonhardt Steffen, Ngo Chuong
Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany.
Department of Anaesthesiology and Intensive Care Medicine, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
Diagnostics (Basel). 2022 Mar 22;12(4):777. doi: 10.3390/diagnostics12040777.
: Electrical Impedance Tomography (EIT) is a radiation-free technique for image reconstruction. However, as the inverse problem of EIT is non-linear and ill-posed, the reconstruction of sharp conductivity images poses a major problem. With the emergence of artificial neural networks (ANN), their application in EIT has recently gained interest. : We propose an ANN that can solve the inverse problem without the presence of a reference voltage. At the end of the ANN, we reused the dense layers multiple times, considering that the EIT exhibits rotational symmetries in a circular domain. To avoid bias in training data, the conductivity range used in the simulations was greater than expected in measurements. We also propose a new method that creates new data samples from existing training data. : We show that our ANN is more robust with respect to noise compared with the analytical Gauss-Newton approach. The reconstruction results for EIT phantom tank measurements are also clearer, as ringing artefacts are less pronounced. To evaluate the performance of the ANN under real-world conditions, we perform reconstructions on an experimental pig study with computed tomography for comparison. : Our proposed ANN can reconstruct EIT images without the need of a reference voltage.
电阻抗断层成像(EIT)是一种用于图像重建的无辐射技术。然而,由于EIT的逆问题是非线性且不适定的,重建清晰的电导率图像是一个主要问题。随着人工神经网络(ANN)的出现,其在EIT中的应用最近受到了关注。:我们提出了一种无需参考电压即可解决逆问题的人工神经网络。在人工神经网络的末尾,考虑到EIT在圆形域中表现出旋转对称性,我们多次重用了全连接层。为避免训练数据中的偏差,模拟中使用的电导率范围大于测量中的预期范围。我们还提出了一种从现有训练数据创建新数据样本的新方法。:我们表明,与解析高斯 - 牛顿方法相比,我们的人工神经网络在噪声方面更具鲁棒性。EIT体模水槽测量的重建结果也更清晰,因为振铃伪影不太明显。为了评估人工神经网络在实际条件下的性能,我们在一项实验性猪研究中进行了重建,并与计算机断层扫描进行比较。:我们提出的人工神经网络无需参考电压即可重建EIT图像。