Suppr超能文献

基于卷积神经网络的中耳和外耳疾病计算机辅助诊断系统中的颜色依赖性分析

Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases.

作者信息

Viscaino Michelle, Talamilla Matias, Maass Juan Cristóbal, Henríquez Pablo, Délano Paul H, Auat Cheein Cecilia, Auat Cheein Fernando

机构信息

Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390382, Chile.

Advanced Center of Electrical and Electronic Engineering, Valparaíso 2390136, Chile.

出版信息

Diagnostics (Basel). 2022 Apr 7;12(4):917. doi: 10.3390/diagnostics12040917.

Abstract

Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician.

摘要

人工智能辅助耳科诊断在科学界越来越受到关注,中耳和外耳疾病是日常耳鼻喉科实践中最常见的疾病。目前有一些致力于使用传统人工视觉系统减少医疗差错并提高医生能力的努力。然而,多光谱分析方法尚未得到探讨。鼓膜组织具有在特定光谱中定义其特征的光学特性。这项工作在一个对四种中耳和外耳状况(正常、慢性中耳炎、中耳积液和耳垢堵塞)进行分类的模型中探索颜色波长依赖性。该模型是在使用卷积神经网络架构的计算机辅助诊断系统下构建的。我们通过分别采用每个颜色波长,使用不同的单通道图像训练了几个模型。结果表明,就准确率(92%)、灵敏度(85%)、特异性(95%)、精确率(86%)和F1分数(85%)而言,单一绿色通道模型实现了最佳的整体性能。与非专科医生50%的总体误诊率相比,我们的研究结果可能是人工智能诊断系统的一个合适替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a3/9031192/b9220f93f301/diagnostics-12-00917-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验