Suppr超能文献

基于深度神经网络特征与支持向量机分类器的胶质瘤肿瘤分类

Glioma Tumors' Classification Using Deep-Neural-Network-Based Features with SVM Classifier.

作者信息

Latif Ghazanfar, Ben Brahim Ghassen, Iskandar D N F Awang, Bashar Abul, Alghazo Jaafar

机构信息

Faculty of Computer Science and Information Technology, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC G7H2B1, Canada.

Department of Computer Science, Prince Mohammad bin Fahd University, Khobar 31952, Saudi Arabia.

出版信息

Diagnostics (Basel). 2022 Apr 18;12(4):1018. doi: 10.3390/diagnostics12041018.

Abstract

The complexity of brain tissue requires skillful technicians and expert medical doctors to manually analyze and diagnose Glioma brain tumors using multiple Magnetic Resonance (MR) images with multiple modalities. Unfortunately, manual diagnosis suffers from its lengthy process, as well as elevated cost. With this type of cancerous disease, early detection will increase the chances of suitable medical procedures leading to either a full recovery or the prolongation of the patient's life. This has increased the efforts to automate the detection and diagnosis process without human intervention, allowing the detection of multiple types of tumors from MR images. This research paper proposes a multi-class Glioma tumor classification technique using the proposed deep-learning-based features with the Support Vector Machine (SVM) classifier. A deep convolution neural network is used to extract features of the MR images, which are then fed to an SVM classifier. With the proposed technique, a 96.19% accuracy was achieved for the HGG Glioma type while considering the FLAIR modality and a 95.46% for the LGG Glioma tumor type while considering the T2 modality for the classification of four Glioma classes (Edema, Necrosis, Enhancing, and Non-enhancing). The accuracies achieved using the proposed method were higher than those reported by similar methods in the extant literature using the same BraTS dataset. In addition, the accuracy results obtained in this work are better than those achieved by the GoogleNet and LeNet pre-trained models on the same dataset.

摘要

脑组织的复杂性需要技术娴熟的技术人员和专业的医生使用多种模态的多个磁共振(MR)图像来手动分析和诊断脑胶质瘤。不幸的是,手动诊断过程漫长,成本也很高。对于这种癌症疾病,早期检测将增加采取适当医疗程序实现完全康复或延长患者生命的机会。这加大了在无人干预情况下实现检测和诊断过程自动化的努力,从而能够从MR图像中检测多种类型的肿瘤。本文提出了一种多类脑胶质瘤肿瘤分类技术,该技术使用基于深度学习的特征和支持向量机(SVM)分类器。利用深度卷积神经网络提取MR图像的特征,然后将其输入到SVM分类器中。使用所提出的技术,在考虑FLAIR模态的情况下,HGG脑胶质瘤类型的准确率达到了96.19%,在考虑T2模态对四种脑胶质瘤类别(水肿区、坏死区、强化区和非强化区)进行分类时,LGG脑胶质瘤肿瘤类型的准确率为95.46%。使用所提出的方法获得的准确率高于现有文献中使用相同的BraTS数据集的类似方法所报告的准确率。此外,在这项工作中获得的准确率结果优于在同一数据集上使用GoogleNet和LeNet预训练模型所取得的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验