Suppr超能文献

用于自旋波导管终端的YFeO/金属双层膜中磁阻尼的调控。

Tuning of Magnetic Damping in YFeO/Metal Bilayers for Spin-Wave Conduit Termination.

作者信息

Krysztofik Adam, Kuznetsov Nikolai, Qin Huajun, Flajšman Lukáš, Coy Emerson, van Dijken Sebastiaan

机构信息

Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland.

NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.

出版信息

Materials (Basel). 2022 Apr 12;15(8):2814. doi: 10.3390/ma15082814.

Abstract

In this work, we investigate the structural and dynamic magnetic properties of yttrium iron garnet (YIG) films grown onto gadolinium gallium garnet (GGG) substrates with thin platinum, iridium, and gold spacer layers. Separation of the YIG film from the GGG substrate by a metal film strongly affects the crystalline structure of YIG and its magnetic damping. Despite the presence of structural defects, however, the YIG films exhibit a clear ferromagnetic resonance response. The ability to tune the magnetic damping without substantial changes to magnetization offers attractive prospects for the design of complex spin-wave conduits. We show that the insertion of a 1-nm-thick metal layer between YIG and GGG already increases the effective damping parameter enough to efficiently absorb spin waves. This bilayer structure can therefore be utilized for magnonic waveguide termination. Investigating the dispersionless propagation of spin-wave packets, we demonstrate that a damping unit consisting of the YIG/metal bilayers can dissipate incident spin-wave signals with reflection coefficient R < 0.1 at a distance comparable to the spatial width of the wave packet.

摘要

在这项工作中,我们研究了生长在钆镓石榴石(GGG)衬底上、带有薄铂、铱和金间隔层的钇铁石榴石(YIG)薄膜的结构和动态磁性能。通过金属膜将YIG薄膜与GGG衬底分离会强烈影响YIG的晶体结构及其磁阻尼。然而,尽管存在结构缺陷,YIG薄膜仍表现出明显的铁磁共振响应。在不对磁化强度进行实质性改变的情况下调节磁阻尼的能力为复杂自旋波导管的设计提供了诱人的前景。我们表明,在YIG和GGG之间插入一层1纳米厚的金属层已经足以增加有效阻尼参数,从而有效地吸收自旋波。因此,这种双层结构可用于磁子波导终端。通过研究自旋波包的无色散传播,我们证明了由YIG/金属双层组成的阻尼单元能够在与波包空间宽度相当的距离处,以反射系数R < 0.1消散入射的自旋波信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc8/9030244/8a81a995c7fe/materials-15-02814-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验