Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell L H
Cell. 1987 Mar 13;48(5):801-12. doi: 10.1016/0092-8674(87)90077-8.
We have developed an assay in S. cerevisiae in which clones of cells that contain intact dicentric minichromosomes are visually distinct from those that have rearranged to monocentric minichromosomes. We find that the instability of dicentric minichromosomes is apparently due to mitotic nondisjunction accompanied by occasional structural rearrangements. Monocentric minichromosomes arising by rearrangement of the plasmid are rapidly selected in the population since dicentric minichromosomes depress the rate of cell division. We show that the ability of one centromere to compete with another in dicentric minichromosomes requires the presence of both of the conserved structural elements, CDE II and CDE III. Dicentric minichromosomes can be stabilized if one of the centromeres on the molecule is functionally hypomorphic because of mutations in CDE II even though these mutant centromeres are highly efficient in monocentric molecules. Stable dicentric molecules can also be produced by decreasing the space between two wild-type centromeres on the same molecule. These results suggest plausible pathways for changes in chromosome number that accompany evolution.
我们在酿酒酵母中开发了一种检测方法,其中含有完整双着丝粒微型染色体的细胞克隆在视觉上与那些已重排为单着丝粒微型染色体的细胞克隆不同。我们发现双着丝粒微型染色体的不稳定性显然是由于有丝分裂不分离并伴有偶尔的结构重排。由于双着丝粒微型染色体会降低细胞分裂速率,通过质粒重排产生的单着丝粒微型染色体在群体中会迅速被选择出来。我们表明,在双着丝粒微型染色体中一个着丝粒与另一个着丝粒竞争的能力需要保守结构元件CDE II和CDE III同时存在。如果分子上的一个着丝粒由于CDE II中的突变而功能亚效,双着丝粒微型染色体就可以被稳定下来,尽管这些突变着丝粒在单着丝粒分子中效率很高。通过减小同一分子上两个野生型着丝粒之间的间距,也可以产生稳定的双着丝粒分子。这些结果为伴随进化的染色体数目变化提出了合理的途径。