Suppr超能文献

一种用于多变量时间序列预测的新型编解码器模型。

A Novel Encoder-Decoder Model for Multivariate Time Series Forecasting.

机构信息

School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

School of Computer Engineering, Weifang University, Weifang, China.

出版信息

Comput Intell Neurosci. 2022 Apr 14;2022:5596676. doi: 10.1155/2022/5596676. eCollection 2022.

Abstract

The time series is a kind of complex structure data, which contains some special characteristics such as high dimension, dynamic, and high noise. Moreover, multivariate time series (MTS) has become a crucial study in data mining. The MTS utilizes the historical data to forecast its variation trend and has turned into one of the hotspots. In the era of rapid information development and big data, accurate prediction of MTS has attracted much attention. In this paper, a novel deep learning architecture based on the encoder-decoder framework is proposed for MTS forecasting. In this architecture, firstly, the gated recurrent unit (GRU) is taken as the main unit structure of both the procedures in encoding and decoding to extract the useful successive feature information. Then, different from the existing models, the attention mechanism (AM) is introduced to exploit the importance of different historical data for reconstruction at the decoding stage. Meanwhile, feature reuse is realized by skip connections based on the residual network for alleviating the influence of previous features on data reconstruction. Finally, in order to enhance the performance and the discriminative ability of the new MTS, the convolutional structure and fully connected module are established. Furthermore, to better validate the effectiveness of MTS forecasting, extensive experiments are executed on two different types of MTS such as stock data and shared bicycle data, respectively. The experimental results adequately demonstrate the effectiveness and the feasibility of the proposed method.

摘要

时间序列是一种复杂的结构数据,包含一些特殊的特征,如高维、动态和高噪声。此外,多元时间序列 (MTS) 已成为数据挖掘中的一个重要研究课题。MTS 利用历史数据来预测其变化趋势,已成为热点之一。在信息快速发展和大数据时代,对 MTS 的准确预测引起了广泛关注。本文提出了一种基于编解码器框架的新型深度学习架构,用于 MTS 预测。在该架构中,首先,门控循环单元 (GRU) 被用作编码和解码过程中的主要单元结构,以提取有用的连续特征信息。然后,与现有模型不同,注意力机制 (AM) 被引入到解码阶段,以利用不同历史数据对于重建的重要性。同时,通过基于残差网络的跳过连接实现特征重用,以减轻先前特征对数据重建的影响。最后,为了提高新的 MTS 的性能和辨别能力,建立了卷积结构和全连接模块。此外,为了更好地验证 MTS 预测的有效性,分别在股票数据和共享单车数据这两种不同类型的 MTS 上进行了广泛的实验。实验结果充分证明了所提出方法的有效性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/994b/9023224/10b6959c0b80/CIN2022-5596676.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验