Suppr超能文献

通过机器学习整合来自冠状动脉CT血管造影(CCTA)的冠状动脉斑块信息可预测疑似冠心病患者的主要不良心血管事件(MACE)。

Integrating Coronary Plaque Information from CCTA by ML Predicts MACE in Patients with Suspected CAD.

作者信息

Dou Guanhua, Shan Dongkai, Wang Kai, Wang Xi, Liu Zinuan, Zhang Wei, Li Dandan, He Bai, Jing Jing, Wang Sicong, Chen Yundai, Yang Junjie

机构信息

Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.

Department of Cardiology, Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China.

出版信息

J Pers Med. 2022 Apr 7;12(4):596. doi: 10.3390/jpm12040596.

Abstract

Conventional prognostic risk analysis in patients undergoing noninvasive imaging is based upon a limited selection of clinical and imaging findings, whereas machine learning (ML) algorithms include a greater number and complexity of variables. Therefore, this paper aimed to explore the predictive value of integrating coronary plaque information from coronary computed tomographic angiography (CCTA) with ML to predict major adverse cardiovascular events (MACEs) in patients with suspected coronary artery disease (CAD). Patients who underwent CCTA due to suspected coronary artery disease with a 30-month follow-up for MACEs were included. We collected demographic characteristics, cardiovascular risk factors, and information on coronary plaques by analyzing CCTA information (plaque length, plaque composition and coronary artery stenosis of 18 coronary artery segments, coronary dominance, myocardial bridge (MB), and patients with vulnerable plaque) and follow-up information (cardiac death, nonfatal myocardial infarction and unstable angina requiring hospitalization). An ML algorithm was used for survival analysis (CoxBoost). This analysis showed that chest symptoms, the stenosis severity of the proximal anterior descending branch, and the stenosis severity of the middle right coronary artery were among the top three variables in the ML model. After the 22nd month of follow-up, in the testing dataset, ML showed the largest C-index and AUC compared with Cox regression, SIS, SIS score + clinical factors, and clinical factors. The DCA of all the models showed that the net benefit of the ML model was the highest when the treatment threshold probability was between 1% and 9%. Integrating coronary plaque information from CCTA based on ML technology provides a feasible and superior method to assess prognosis in patients with suspected coronary artery disease over an approximately three-year period.

摘要

接受无创成像检查的患者的传统预后风险分析基于有限的临床和成像检查结果选择,而机器学习(ML)算法包含更多数量和更复杂的变量。因此,本文旨在探讨将冠状动脉计算机断层血管造影(CCTA)的冠状动脉斑块信息与ML相结合,以预测疑似冠状动脉疾病(CAD)患者主要不良心血管事件(MACE)的预测价值。纳入因疑似冠状动脉疾病接受CCTA检查并对MACE进行30个月随访的患者。我们通过分析CCTA信息(斑块长度、斑块成分和18个冠状动脉节段的冠状动脉狭窄、冠状动脉优势、心肌桥(MB)以及易损斑块患者)和随访信息(心源性死亡、非致命性心肌梗死和需要住院治疗的不稳定型心绞痛)收集人口统计学特征、心血管危险因素和冠状动脉斑块信息。使用ML算法进行生存分析(CoxBoost)。该分析表明,胸部症状、前降支近端狭窄严重程度和右冠状动脉中段狭窄严重程度是ML模型中的前三个变量。随访第22个月后,在测试数据集中,与Cox回归、SIS、SIS评分+临床因素和临床因素相比,ML显示出最大的C指数和AUC。所有模型的DCA表明,当治疗阈值概率在1%至9%之间时,ML模型的净效益最高。基于ML技术整合CCTA的冠状动脉斑块信息,为评估疑似冠状动脉疾病患者约三年期间的预后提供了一种可行且优越的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/478e/9025955/3a8a8ddd044d/jpm-12-00596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验