Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Taper building, A238, 8700 Beverly Blvd, Los Angeles, 90048, USA.
Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
Eur Radiol. 2018 Jun;28(6):2655-2664. doi: 10.1007/s00330-017-5223-z. Epub 2018 Jan 19.
We aimed to investigate if lesion-specific ischaemia by invasive fractional flow reserve (FFR) can be predicted by an integrated machine learning (ML) ischaemia risk score from quantitative plaque measures from coronary computed tomography angiography (CTA).
In a multicentre trial of 254 patients, CTA and invasive coronary angiography were performed, with FFR in 484 vessels. CTA data sets were analysed by semi-automated software to quantify stenosis and non-calcified (NCP), low-density NCP (LD-NCP, < 30 HU), calcified and total plaque volumes, contrast density difference (CDD, maximum difference in luminal attenuation per unit area) and plaque length. ML integration included automated feature selection and model building from quantitative CTA with a boosted ensemble algorithm, and tenfold stratified cross-validation.
Eighty patients had ischaemia by FFR (FFR ≤ 0.80) in 100 vessels. Information gain for predicting ischaemia was highest for CDD (0.172), followed by LD-NCP (0.125), NCP (0.097), and total plaque volumes (0.092). ML exhibited higher area-under-the-curve (0.84) than individual CTA measures, including stenosis (0.76), LD-NCP volume (0.77), total plaque volume (0.74) and pre-test likelihood of coronary artery disease (CAD) (0.63); p < 0.006.
Integrated ML ischaemia risk score improved the prediction of lesion-specific ischaemia by invasive FFR, over stenosis, plaque measures and pre-test likelihood of CAD.
• Integrated ischaemia risk score improved prediction of ischaemia over quantitative plaque measures • Integrated ischaemia risk score showed higher prediction of ischaemia than standard approach • Contrast density difference had the highest information gain to identify lesion-specific ischaemia.
我们旨在探究通过冠状动脉计算机断层扫描血管造影(CTA)定量斑块指标得出的综合机器学习(ML)缺血风险评分,是否能预测有创性局部血流储备分数(FFR)的特定病变缺血。
在一项 254 例患者的多中心试验中,进行 CTA 和有创性冠状动脉造影检查,484 支血管进行 FFR 检查。使用半自动软件对 CTA 数据集进行分析,以定量狭窄和非钙化斑块(NCP)、低密度非钙化斑块(LD-NCP,<30 HU)、钙化斑块和总斑块体积、对比密度差(CDD,每单位面积的管腔衰减最大差值)和斑块长度。ML 集成包括使用增强集成算法进行自动特征选择和定量 CTA 模型构建,以及 10 倍分层交叉验证。
80 例患者的 100 支血管存在 FFR (FFR≤0.80)缺血。预测缺血的信息量增益最高的是 CDD(0.172),其次是 LD-NCP(0.125)、NCP(0.097)和总斑块体积(0.092)。ML 的曲线下面积(AUC)(0.84)高于个体 CTA 指标,包括狭窄程度(0.76)、LD-NCP 体积(0.77)、总斑块体积(0.74)和冠心病预测试验概率(0.63);p<0.006。
综合 ML 缺血风险评分改善了有创性 FFR 预测特定病变缺血的准确性,优于狭窄程度、斑块指标和冠心病预测试验概率。
综合缺血风险评分提高了缺血的预测准确性,优于定量斑块指标。
综合缺血风险评分在预测缺血方面优于标准方法。
CDD 提供了识别特定病变缺血的最高信息量。