Suppr超能文献

使用机器学习方法开发并验证一种非侵入性的椅旁口腔癌风险评估原型

Development and Validation of a Non-Invasive, Chairside Oral Cavity Cancer Risk Assessment Prototype Using Machine Learning Approach.

作者信息

Shimpi Neel, Glurich Ingrid, Rostami Reihaneh, Hegde Harshad, Olson Brent, Acharya Amit

机构信息

Marshfield Clinic Research Institute, Marshfield, WI 54449, USA.

Computer Science Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.

出版信息

J Pers Med. 2022 Apr 11;12(4):614. doi: 10.3390/jpm12040614.

Abstract

Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an opportunity for implementing prevention strategies surrounding modifiable risk factors and screening to promote early detection and intervention. Historical evidence identified a gap in the training of primary care providers (PCPs) surrounding the examination of the oral cavity. The absence of clinically applicable analytical tools to identify patients with high-risk OCC phenotypes at point-of-care (POC) causes missed opportunities for implementing patient-specific interventional strategies. This study developed an OCC risk assessment tool prototype by applying machine learning (ML) approaches to a rich retrospectively collected data set abstracted from a clinical enterprise data warehouse. We compared the performance of six ML classifiers by applying the 10-fold cross-validation approach. Accuracy, recall, precision, specificity, area under the receiver operating characteristic curve, and recall-precision curves for the derived voting algorithm were: 78%, 64%, 88%, 92%, 0.83, and 0.81, respectively. The performance of two classifiers, multilayer perceptron and AdaBoost, closely mirrored the voting algorithm. Integration of the OCC risk assessment tool developed by clinical informatics application into an electronic health record as a clinical decision support tool can assist PCPs in targeting at-risk patients for personalized interventional care.

摘要

口腔癌(OCC)在晚期被诊断时,其发病率和死亡率都很高。早期发现风险增加,为围绕可改变的风险因素实施预防策略以及进行筛查以促进早期发现和干预提供了机会。历史证据表明,初级保健提供者(PCP)在口腔检查方面的培训存在差距。缺乏在护理点(POC)识别高风险口腔癌表型患者的临床适用分析工具,导致错失实施针对患者的干预策略的机会。本研究通过将机器学习(ML)方法应用于从临床企业数据仓库中丰富的回顾性收集数据集,开发了一种口腔癌风险评估工具原型。我们应用10折交叉验证方法比较了六种ML分类器的性能。派生投票算法的准确率、召回率、精确率、特异性、受试者工作特征曲线下面积和召回-精确率曲线分别为:78%、64%、88%、92%、0.83和0.81。多层感知器和AdaBoost这两种分类器的性能与投票算法密切相似。将临床信息学应用开发的口腔癌风险评估工具集成到电子健康记录中作为临床决策支持工具,可以帮助初级保健提供者针对有风险的患者进行个性化干预护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef3/9032985/022e8c084eab/jpm-12-00614-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验