Suppr超能文献

春小麦普通腥黑穗病、赤霉病、条锈病、叶锈病和叶斑病抗性的基因组预测。

Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf Spotting Resistance in Spring Wheat.

机构信息

Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.

Agronomy Department, University of Florida, Gainesville, FL 32611, USA.

出版信息

Genes (Basel). 2022 Mar 23;13(4):565. doi: 10.3390/genes13040565.

Abstract

Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, the prediction accuracy on common bunt has not previously been studied. Here, we investigated within-population prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3) with three random cross-validation (CV1, CV2, and CV0) schemes. Three Canadian spring wheat populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and 23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual variance by an average of 10.2% as compared with the main effect M2 model and increased prediction accuracies on average by 2-6%. In some traits, the M3 model increased prediction accuracies up to 54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very high (0.54-0.87) prediction accuracies. This is the first comprehensive genomic selection study on five major diseases in spring wheat.

摘要

一些研究已经调查了基因组选择(GS)在小麦条锈病、叶锈病、赤霉病(FHB)和叶斑病中的潜力,但没有一项研究评估了包含遗传互作的反应规范模型的效果。此外,以前也没有研究过对普通坚黑穗病的预测准确性。在这里,我们使用基线 M1 模型和两个反应规范模型(M2 和 M3)以及三个随机交叉验证(CV1、CV2 和 CV0)方案,研究了群体内预测精度。三个加拿大春小麦群体在多达 8 个田间环境中进行了评估,并使用 3158、5732 和 23795 个多态性标记进行了基因型分析。与主要效应 M2 模型相比,包含遗传互作的 M3 模型平均降低了 10.2%的剩余方差,并平均提高了 2-6%的预测精度。在某些性状中,M3 模型的预测精度比 M2 模型提高了 54%。CV1、CV2 和 CV0 方案的 M3 模型的平均预测精度分别为 0.02-0.48、0.25-0.84 和 0.14-0.87。在 CV2 和 CV0 方案中,三个群体的条锈病、两个群体的普通坚黑穗病和叶锈病以及一个群体的赤霉病严重度、赤霉病指数和叶斑病都具有高到非常高(0.54-0.87)的预测精度。这是春小麦五种主要病害的首次综合基因组选择研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fa5/9032109/b4ed1bac976d/genes-13-00565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验