Suppr超能文献

通过基于主体和贝叶斯蒙特卡罗建模对体外癌症药物药效学进行探究和量化

Interrogating and Quantifying In Vitro Cancer Drug Pharmacodynamics via Agent-Based and Bayesian Monte Carlo Modelling.

作者信息

Demetriades Marios, Zivanovic Marko, Hadjicharalambous Myrianthi, Ioannou Eleftherios, Ljujic Biljana, Vucicevic Ksenija, Ivosevic Zeljko, Dagovic Aleksandar, Milivojevic Nevena, Kokkinos Odysseas, Bauer Roman, Vavourakis Vasileios

机构信息

Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus.

Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia.

出版信息

Pharmaceutics. 2022 Mar 30;14(4):749. doi: 10.3390/pharmaceutics14040749.

Abstract

The effectiveness of chemotherapy in cancer cell regression is often limited by drug resistance, toxicity, and neoplasia heterogeneity. However, due to the significant complexities entailed by the many cancer growth processes, predicting the impact of interference and symmetry-breaking mechanisms is a difficult problem. To quantify and understand more about cancer drug pharmacodynamics, we combine in vitro with in silico cancer models. The anti-proliferative action of selected cytostatics is interrogated on human colorectal and breast adenocarcinoma cells, while an agent-based computational model is employed to reproduce experiments and shed light on the main therapeutic mechanisms of each chemotherapeutic agent. Multiple drug administration scenarios on each cancer cell line are simulated by varying the drug concentration, while a Bayesian-based method for model parameter optimisation is employed. Our proposed procedure of combining in vitro cancer drug screening with an in silico agent-based model successfully reproduces the impact of chemotherapeutic drugs in cancer growth behaviour, while the mechanisms of action of each drug are characterised through model-derived probabilities of cell apoptosis and division. We suggest that our approach could form the basis for the prospective generation of experimentally-derived and model-optimised pharmacological variables towards personalised cancer therapy.

摘要

化疗在癌细胞消退方面的有效性常常受到耐药性、毒性和肿瘤异质性的限制。然而,由于众多癌症生长过程所涉及的显著复杂性,预测干扰和对称破缺机制的影响是一个难题。为了量化并更深入地了解癌症药物的药效学,我们将体外癌症模型与计算机模拟癌症模型相结合。在人结肠直肠癌和乳腺腺癌细胞上研究了选定细胞抑制剂的抗增殖作用,同时采用基于智能体的计算模型来重现实验并阐明每种化疗药物的主要治疗机制。通过改变药物浓度模拟每种癌细胞系的多种给药方案,同时采用基于贝叶斯的模型参数优化方法。我们提出的将体外癌症药物筛选与基于智能体的计算机模拟模型相结合的程序成功重现了化疗药物对癌症生长行为的影响,而每种药物的作用机制则通过模型推导的细胞凋亡和分裂概率来表征。我们认为,我们的方法可为前瞻性生成实验得出且经模型优化的药理学变量以实现个性化癌症治疗奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2fc/9029523/9d63886cb287/pharmaceutics-14-00749-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验