Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain.
Centro de Investigación Biomédica en Red (CIBER), Instituto de Salud Carlos III (ISCIII), 20029 Madrid, Spain.
Int J Mol Sci. 2022 Apr 15;23(8):4391. doi: 10.3390/ijms23084391.
Nanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer's or Parkinson's disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D-aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.
纳米粒子在生物医学应用中发挥着越来越重要的作用。兴奋性毒性在神经退行性疾病的病理生理学中起着重要作用,如阿尔茨海默病或帕金森病。谷氨酸离子型受体,主要是那些被 N-甲基-D-天冬氨酸 (NMDA) 激活的受体,通过增加细胞内钙离子水平、触发线粒体电位崩溃、增加自由基、激活半胱天冬酶 3、9 和 12 以及诱导内质网应激,在兴奋性毒性死亡中发挥关键作用。作为细胞内物质的中性磷树状大分子通过干扰 NMDA 介导的大鼠皮质神经元兴奋性毒性机制发挥神经保护作用。此外,磷树状大分子可以进入人类脑类器官内部,这些复杂的三维结构复制了大量人脑的特性,以干扰 NMDA 诱导的神经元死亡机制。磷树状大分子是少数几种能够进入神经元内部的纳米粒子之一,无论是在原代培养物还是在脑类器官中,都可以通过自身发挥药理作用。