Tahir Muhammad, Zeb Muhammad, Hussain Shahid, Sarker Mahidur R, Khan Dil Nawaz, Wahab Fazal, Ali Sawal Hamid Md
Department of Physics, Faculty of Physical and Numerical Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
Institute of IR 4.0, University Kebangsaan Malaysia, Bangi 43600, Malaysia.
Polymers (Basel). 2022 Apr 7;14(8):1503. doi: 10.3390/polym14081503.
In this paper, we report on the synthesis-via the wet chemical precipitation route method-and thin film characteristics of inorganic semiconductor, cuprous oxide (CuO) nanoparticles, for their potential application in enhancing the humidity-sensing properties of semiconducting polymer poly(9,9-dioctylfluorene) (F8). For morphological analysis of the synthesized CuO nanoparticles, transmission electron microscope (TEM) and scanning electron microscope (SEM) micrographs are studied to investigate the texture, distribution, shape, and sizes of CuO crystallites. The TEM image of the CuO nanoparticles exhibits somewhat non-uniform distribution with almost uniform shape and size having an average particle size of ≈24 ± 2 nm. Fourier transformed infrared (FTIR) and X-ray diffraction (XRD) spectra are studied to validate the formation of CuO nanoparticles. Additionally, atomic force microscopy (AFM) is performed to analyze the surface morphology of polymer-inorganic (F8-CuO) nanocomposites thin film to see the grain sizes, mosaics, and average surface roughness. In order to study the enhancement in sensing properties of F8, a hybrid organic-inorganic (F8-CuO) surface-type humidity sensor Ag/F8-CuO/Ag is fabricated by employing F8 polymer as an active matrix layer and CuO nanoparticles as a dopant. The Ag/F8-CuO/Ag device is prepared by spin coating a 10:1 wt% solution of F8-CuO nanocomposite on pre-patterned silver (Ag) electrodes on glass. The inter-electrode gap (≈5 μm) between Ag is developed by photolithography. To study humidity sensing, the Ag/F8-CuO/Ag device is characterized by measuring its capacitance (C) as a function of relative humidity (%RH) at two different frequencies (120 Hz and 1 kHz). The device exhibits a broad humidity sensing range (27-86%RH) with shorter response time and recovery time, i.e., 9 s and 8 s, respectively. The present results show significant enhancement in the humidity-sensing properties as compared to our previously reported results of Ag/F8/Ag sensor wherein the humidity sensing range was 45-78%RH with 15 s and 7 s response and recovery times, respectively. The improvement in the humidity-sensing properties is attributed to the potential use of CuO nanoparticles, which change the hydrophobicity, surface to volume ratio of CuO nanoparticles, as well as modification in electron polarizability and polarity of the F8 matrix layer.
在本文中,我们报道了通过湿化学沉淀法合成无机半导体氧化亚铜(CuO)纳米颗粒及其薄膜特性,以探讨其在增强半导体聚合物聚(9,9 - 二辛基芴)(F8)湿度传感性能方面的潜在应用。为了对合成的CuO纳米颗粒进行形态分析,研究了透射电子显微镜(TEM)和扫描电子显微镜(SEM)图像,以研究CuO微晶的纹理、分布、形状和尺寸。CuO纳米颗粒的TEM图像显示出分布有些不均匀,形状和尺寸几乎均匀,平均粒径约为24±2nm。研究了傅里叶变换红外(FTIR)光谱和X射线衍射(XRD)光谱,以验证CuO纳米颗粒的形成。此外,进行了原子力显微镜(AFM)分析,以研究聚合物 - 无机(F8 - CuO)纳米复合材料薄膜的表面形态,查看晶粒尺寸、镶嵌结构和平均表面粗糙度。为了研究F8传感性能的增强,通过使用F8聚合物作为活性基质层和CuO纳米颗粒作为掺杂剂,制备了一种混合有机 - 无机(F8 - CuO)表面型湿度传感器Ag/F8 - CuO/Ag。通过在玻璃上预先图案化的银(Ag)电极上旋涂10:1重量比的F8 - CuO纳米复合材料溶液来制备Ag/F8 - CuO/Ag器件。Ag之间的电极间隙(约5μm)通过光刻形成。为了研究湿度传感,通过在两个不同频率(120Hz和1kHz)下测量其电容(C)作为相对湿度(%RH)的函数来表征Ag/F8 - CuO/Ag器件。该器件具有宽湿度传感范围(27 - 86%RH),响应时间和恢复时间较短,分别为9秒和8秒。与我们之前报道的Ag/F8/Ag传感器结果相比,本研究结果显示出湿度传感性能的显著增强,其中Ag/F8/Ag传感器的湿度传感范围为45 - 78%RH,响应时间和恢复时间分别为15秒和7秒。湿度传感性能的改善归因于CuO纳米颗粒的潜在用途,其改变了CuO纳米颗粒的疏水性、表面体积比,以及F8基质层的电子极化率和极性。