Suppr超能文献

基于卷积神经网络的智能机器人视觉传感鲁棒火灾检测模型。

A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing.

机构信息

School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China.

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430079, China.

出版信息

Sensors (Basel). 2022 Apr 11;22(8):2929. doi: 10.3390/s22082929.

Abstract

Accurate fire identification can help to control fires. Traditional fire detection methods are mainly based on temperature or smoke detectors. These detectors are susceptible to damage or interference from the outside environment. Meanwhile, most of the current deep learning methods are less discriminative with respect to dynamic fire and have lower detection precision when a fire changes. Therefore, we propose a dynamic convolution YOLOv5 fire detection method using a video sequence. Our method first uses the K-mean++ algorithm to optimize anchor box clustering; this significantly reduces the rate of classification error. Then, the dynamic convolution is introduced into the convolution layer of YOLOv5. Finally, pruning of the network heads of YOLOv5's neck and head is carried out to improve the detection speed. Experimental results verify that the proposed dynamic convolution YOLOv5 fire detection method demonstrates better performance than the YOLOv5 method in recall, precision and F1-score. In particular, compared with three other deep learning methods, the precision of the proposed algorithm is improved by 13.7%, 10.8% and 6.1%, respectively, while the F1-score is improved by 15.8%, 12% and 3.8%, respectively. The method described in this paper is applicable not only to short-range indoor fire identification but also to long-range outdoor fire detection.

摘要

准确的火灾识别有助于控制火灾。传统的火灾探测方法主要基于温度或烟雾探测器。这些探测器容易受到外部环境的损坏或干扰。同时,大多数现有的深度学习方法对动态火灾的区分能力较差,当火灾发生变化时,检测精度较低。因此,我们提出了一种基于视频序列的动态卷积 YOLOv5 火灾检测方法。我们的方法首先使用 K-mean++算法优化锚框聚类;这显著降低了分类错误率。然后,将动态卷积引入到 YOLOv5 的卷积层中。最后,对 YOLOv5 的颈部和头部的网络头进行剪枝,以提高检测速度。实验结果验证了所提出的动态卷积 YOLOv5 火灾检测方法在召回率、精度和 F1 分数方面的性能优于 YOLOv5 方法。特别是与其他三种深度学习方法相比,所提出算法的精度分别提高了 13.7%、10.8%和 6.1%,F1 分数分别提高了 15.8%、12%和 3.8%。本文所描述的方法不仅适用于短距离室内火灾识别,也适用于长距离室外火灾检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d14d/9025736/9e34bdbeb2cb/sensors-22-02929-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验