Suppr超能文献

利用被动感知和深度异常检测识别患者特定行为,以了解双相情感障碍的疾病轨迹并预测复发:一项无接触队列研究方案。

Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study.

机构信息

Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.

Centre for Addiction and Mental Health (CAMH), 100 Stokes St., Rm 4229, Toronto, ON, Canada.

出版信息

BMC Psychiatry. 2022 Apr 22;22(1):288. doi: 10.1186/s12888-022-03923-1.

Abstract

BACKGROUND

Predictive models for mental disorders or behaviors (e.g., suicide) have been successfully developed at the level of populations, yet current demographic and clinical variables are neither sensitive nor specific enough for making individual clinical predictions. Forecasting episodes of illness is particularly relevant in bipolar disorder (BD), a mood disorder with high recurrence, disability, and suicide rates. Thus, to understand the dynamic changes involved in episode generation in BD, we propose to extract and interpret individual illness trajectories and patterns suggestive of relapse using passive sensing, nonlinear techniques, and deep anomaly detection. Here we describe the study we have designed to test this hypothesis and the rationale for its design.

METHOD

This is a protocol for a contactless cohort study in 200 adult BD patients. Participants will be followed for up to 2 years during which they will be monitored continuously using passive sensing, a wearable that collects multimodal physiological (heart rate variability) and objective (sleep, activity) data. Participants will complete (i) a comprehensive baseline assessment; (ii) weekly assessments; (iii) daily assessments using electronic rating scales. Data will be analyzed using nonlinear techniques and deep anomaly detection to forecast episodes of illness.

DISCUSSION

This proposed contactless, large cohort study aims to obtain and combine high-dimensional, multimodal physiological, objective, and subjective data. Our work, by conceptualizing mood as a dynamic property of biological systems, will demonstrate the feasibility of incorporating individual variability in a model informing clinical trajectories and predicting relapse in BD.

摘要

背景

已经成功地在人群层面上开发出用于预测精神障碍或行为(例如自杀)的模型,但当前的人口统计学和临床变量既不敏感也不够具体,无法进行个体临床预测。预测疾病发作在双相情感障碍(BD)中尤为重要,BD 是一种具有高复发率、残疾率和自杀率的情绪障碍。因此,为了了解 BD 发作中涉及的动态变化,我们提议使用被动感测、非线性技术和深度异常检测来提取和解释提示复发的个体疾病轨迹和模式。在这里,我们描述了我们设计的用于测试这一假设的研究及其设计原理。

方法

这是一项针对 200 名成年 BD 患者的非接触式队列研究方案。参与者将在长达 2 年的时间内接受连续监测,使用被动感测,即收集多模态生理(心率变异性)和客观(睡眠、活动)数据的可穿戴设备。参与者将完成:(i)全面基线评估;(ii)每周评估;(iii)使用电子评定量表进行日常评估。将使用非线性技术和深度异常检测来分析数据,以预测疾病发作。

讨论

这项拟议的非接触式、大型队列研究旨在获取和整合高维、多模态生理、客观和主观数据。我们的工作通过将情绪概念化为生物系统的动态特性,将证明在为 BD 提供临床轨迹和预测复发的模型中纳入个体变异性的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1d4/9026652/f60568d38d9c/12888_2022_3923_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验