Inria Paris, 2 rue Simone Iff, 75012, Paris, France.
Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France.
Nat Commun. 2022 Apr 22;13(1):2199. doi: 10.1038/s41467-022-29888-z.
Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed thanks to machine learning methods and improved computational resources. This greatly facilitates the online adaptation of microscopy experimental plans using real-time information of the observed systems and their environments. Applications in which reactiveness is needed are multifarious. Here we report MicroMator, an open and flexible software for defining and driving reactive microscopy experiments. It provides a Python software environment and an extensible set of modules that greatly facilitate the definition of events with triggers and effects interacting with the experiment. We provide a pedagogic example performing dynamic adaptation of fluorescence illumination on bacteria, and demonstrate MicroMator's potential via two challenging case studies in yeast to single-cell control and single-cell recombination, both requiring real-time tracking and light targeting at the single-cell level.
显微镜图像分析近年来在准确性和速度方面都取得了巨大的进展,这要归功于机器学习方法和改进的计算资源。这极大地促进了利用观察系统及其环境的实时信息在线调整显微镜实验方案。需要反应性的应用有很多。在这里,我们报告了 MicroMator,这是一种用于定义和驱动反应性显微镜实验的开放且灵活的软件。它提供了一个 Python 软件环境和一套可扩展的模块,极大地简化了使用触发器和与实验交互的效果来定义事件的过程。我们提供了一个关于在细菌上动态调整荧光照明的教学示例,并通过两个在酵母中进行的具有挑战性的案例研究展示了 MicroMator 的潜力,这两个案例研究都需要实时跟踪和在单细胞水平上进行光照定位。