Fay Matthew G, Lang Peter J, Denu David S, O'Connor Nathan J, Haydock Benjamin, Blaisdell Jeffrey, Roussel Nicolas, Wilson Alissa, Aronson Sage M, Angstman Paul J, Gong Cheng, Butola Tanvi, Devinsky Orrin, Basu Jayeeta, Tomer Raju, Glaser Jacob R
MBF Bioscience, Williston, VT 05495, USA.
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
bioRxiv. 2024 Aug 19:2024.08.15.608141. doi: 10.1101/2024.08.15.608141.
Three-dimensional (3D) imaging of cleared intact brains of animal models and large human and non-human primate postmortem brain specimens is important for understanding the physiological neural network connectivity patterns and the pathological alterations underlying neuropsychiatric and neurological disorders. Light-sheet microscopy has emerged as a highly effective imaging modality for rapid high-resolution imaging of large cleared samples. However, the orthogonal arrangements of illumination and detection optics in light sheet microscopy limits the size of specimen that can be imaged. Recently developed light sheet theta microscopy (LSTM) technology addressed this by utilizing a unique arrangement of two illumination light paths oblique to the detection light path, while allowing perpendicular arrangement of the detection light path relative to the specimen surface. Here, we report development of a next-generation, fully integrated, and user-friendly LSTM system for rapid sub-cellular resolution imaging uniformly throughout a large specimen without constraining the lateral (XY) size. In addition, we provide a seamlessly integrated workflow for image acquisition, data storage, pre- and post-processing, enhancement, and quantitative analysis. We demonstrate the system performance by high-resolution 3D imaging of intact mouse brains and human brain samples, and complete data analysis including digital neuron tracing, vessel reconstruction and design-based stereological analysis in 3D. This technically enhanced and user-friendly LSTM implementation will enable rapid quantitative mapping of molecular and cellular features of interests in diverse types of very large samples.
对动物模型完整的透明大脑以及人类和非人类灵长类动物大型尸检脑标本进行三维(3D)成像,对于理解生理神经网络连接模式以及神经精神疾病和神经疾病背后的病理改变非常重要。光片显微镜已成为一种高效的成像方式,可对大型透明样本进行快速高分辨率成像。然而,光片显微镜中照明和检测光学器件的正交排列限制了可成像标本的大小。最近开发的光片θ显微镜(LSTM)技术通过利用两条与检测光路倾斜的照明光路的独特排列解决了这一问题,同时允许检测光路相对于标本表面垂直排列。在此,我们报告了一种下一代、完全集成且用户友好的LSTM系统的开发,该系统可在不限制横向(XY)尺寸的情况下,在整个大型标本中均匀地进行快速亚细胞分辨率成像。此外,我们提供了一个无缝集成的工作流程,用于图像采集、数据存储、预处理和后处理、增强以及定量分析。我们通过对完整小鼠大脑和人类脑样本进行高分辨率3D成像以及包括数字神经元追踪、血管重建和基于设计的三维立体分析在内的完整数据分析来展示系统性能。这种技术增强且用户友好的LSTM实现方式将能够对各种非常大的样本中感兴趣的分子和细胞特征进行快速定量映射。