Suppr超能文献

振动极化激元化学中腔改变的热异构化速率和动态共振局域化

Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry.

作者信息

Fischer Eric W, Anders Janet, Saalfrank Peter

机构信息

Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.

Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany and CEMPS, Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom.

出版信息

J Chem Phys. 2022 Apr 21;156(15):154305. doi: 10.1063/5.0076434.

Abstract

It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrödinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency ω is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.

摘要

实验表明,与在“普通”反应条件下观察到的反应速率相比,嵌入微流控光学腔中的分子的反应速率会发生改变。然而,光学腔模与分子振动的强耦合如何影响反应活性以及共振行为如何出现的精确机制仍存在争议。在本工作中,我们从热模型反应的角度来探讨这些机制问题,即在存在频率和耦合强度可变的单腔模的情况下,氨沿伞形模式的反转。对相关的腔玻恩 - 奥本海默势能面进行拓扑分析,并结合量子力学和过渡态理论速率计算,揭示了两种量子效应,导致反应速率减慢,与实验定性一致:在过渡态垂直于反应路径的量子化模式的硬化,这减少了热可及反应通道的数量,以及势垒区域的展宽,这减弱了隧穿效应。我们发现这两种效应在波动环境中非常稳健,会导致势参数(如势垒高度)的统计变化。此外,通过求解振动强耦合 regime 下的含时薛定谔方程,我们确定了一种共振行为,与实验和早期理论工作定性一致。后者表现为当腔频率ω调谐到与分子反应物频率共振时反应概率降低。我们发现这种效应基于振动极化子波包在反应物阱中的动态局域化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验