Mondal Subhadip, Keshavamurthy Srihari
Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India.
J Chem Phys. 2023 Aug 21;159(7). doi: 10.1063/5.0160586.
Explanation for the modification of rates and mechanism of reactions carried out in optical cavities still eludes us. Several studies indicate that the cavity-mediated changes in the nature of vibrational energy flow within a molecule may play a significant role. Here, we study a model polaritonic system, proposed and analyzed earlier by Fischer et al., J. Chem. Phys. 156, 154305 (2022), comprising a one-dimensional isomerization mode coupled to a single photon mode in a lossless cavity. We show that the isomerization probability in the presence of virtual photons, for specific cavity-system coupling strengths and cavity frequencies, can exhibit suppression or enhancement for different choices of the initial reactant vibropolariton wavepacket. We observe a qualitative agreement between the classical and quantum average isomerization probabilities in the virtual photon case. A significant part of the effects due to coupling to the cavity can be rationalized in terms of a "chaos-order-chaos" transition of the classical phase space and the phase space localization nature of the polariton states that dominantly participate in the quantum isomerization dynamics. On the other hand, for initial states with zero photons (i.e., a "dark cavity"), the isomerization probability is suppressed when the cavity frequency is tuned near to the fundamental frequency of the reactive mode. The classical-quantum correspondence in the zero photon case is unsatisfactory. In this simple model, we find that the suppression or enhancement of isomerization arises due to the interplay between cavity-system energy flow dynamics and quantum tunneling.
对于在光学腔中进行的反应速率和反应机制的改变,我们仍然难以给出解释。多项研究表明,腔内介导的分子内振动能流性质的变化可能起着重要作用。在此,我们研究了一个由菲舍尔等人(《化学物理杂志》156, 154305 (2022))先前提出并分析的模型极化子系统,该系统由一个与无损腔中的单光子模式耦合的一维异构化模式组成。我们表明,对于特定的腔 - 系统耦合强度和腔频率,在存在虚光子的情况下,异构化概率对于初始反应物振动极化子波包的不同选择可能会出现抑制或增强。我们观察到在虚光子情况下经典平均异构化概率和量子平均异构化概率之间存在定性一致性。由于与腔耦合产生的大部分效应可以根据经典相空间的“混沌 - 有序 - 混沌”转变以及主导参与量子异构化动力学的极化子态的相空间局域化性质来进行合理解释。另一方面,对于零光子的初始态(即“暗腔”),当腔频率调谐到接近反应模式的基频时,异构化概率会受到抑制。在零光子情况下经典 - 量子对应关系并不理想。在这个简单模型中,我们发现异构化的抑制或增强是由于腔 - 系统能流动力学和量子隧穿之间的相互作用引起的。