Fischer Eric W, Saalfrank Peter
Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany.
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany.
J Chem Theory Comput. 2023 Oct 24;19(20):7215-7229. doi: 10.1021/acs.jctc.3c00708. Epub 2023 Oct 4.
The emerging field of vibro-polaritonic chemistry studies the impact of light-matter hybrid states known as vibrational polaritons on chemical reactivity and molecular properties. Here, we discuss vibro-polaritonic chemistry from a quantum chemical perspective beyond the cavity Born-Oppenheimer (CBO) approximation and examine the role of electron-photon correlation in effective ground state Hamiltonians. We first quantitatively review ab initio vibro-polaritonic chemistry based on the molecular Pauli-Fierz Hamiltonian in dipole approximation and a vibrational strong coupling (VSC) Born-Huang expansion. We then derive nonadiabatic coupling elements arising from both "slow" nuclei and cavity modes compared to "fast" electrons via the generalized Hellmann-Feynman theorem, discuss their properties, and reevaluate the CBO approximation. In the second part, we introduce a crude VSC Born-Huang expansion based on adiabatic electronic states, which provides a foundation for widely employed effective Pauli-Fierz Hamiltonians in ground state vibro-polaritonic chemistry. Those do not strictly respect the CBO approximation but an alternative scheme, which we name crude CBO approximation. We argue that the crude CBO ground state misses electron-photon correlation relative to the CBO ground state due to neglected cavity-induced nonadiabatic transition dipole couplings to excited states. A perturbative connection between both ground state approximations is proposed, which identifies the crude CBO ground state as a first-order approximation to its CBO counterpart. We provide an illustrative numerical analysis of the cavity Shin-Metiu model with a focus on nonadiabatic coupling under VSC and electron-photon correlation effects on classical activation barriers. We finally discuss the potential shortcomings of the electron-polariton Hamiltonian when employed in the VSC regime.
振动极化子化学这一新兴领域研究被称为振动极化子的光与物质混合态对化学反应活性和分子性质的影响。在此,我们从量子化学角度,超越腔玻恩 - 奥本海默(CBO)近似来讨论振动极化子化学,并研究电子 - 光子相关性在有效基态哈密顿量中的作用。我们首先基于偶极近似下的分子泡利 - 菲尔斯哈密顿量和振动强耦合(VSC)玻恩 - 黄展开,对从头算振动极化子化学进行定量综述。然后,我们通过广义赫尔曼 - 费曼定理,推导与“快”电子相比,由“慢”原子核和腔模产生的非绝热耦合元素,讨论它们的性质,并重新评估CBO近似。在第二部分,我们引入基于绝热电子态的粗略VSC玻恩 - 黄展开,这为基态振动极化子化学中广泛使用的有效泡利 - 菲尔斯哈密顿量提供了基础。这些哈密顿量并不严格遵循CBO近似,而是遵循一种我们称为粗略CBO近似的替代方案。我们认为由于忽略了腔诱导的到激发态的非绝热跃迁偶极耦合,相对于CBO基态,粗略CBO基态遗漏了电子 - 光子相关性。我们提出了两种基态近似之间的微扰联系,将粗略CBO基态确定为其CBO对应基态的一阶近似。我们对腔申 - 梅蒂乌模型进行了说明性数值分析,重点关注VSC下的非绝热耦合以及电子 - 光子相关性对经典活化能垒的影响。我们最后讨论了在VSC regime中使用电子 - 极化子哈密顿量时可能存在的缺点。