Suppr超能文献

结合磁共振弥散加权成像与前列腺特异性抗原鉴别前列腺良恶性病变。

Combining Magnetic Resonance Diffusion-Weighted Imaging with Prostate-Specific Antigen to Differentiate Between Malignant and Benign Prostate Lesions.

机构信息

Department of Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China (mainland).

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China (mainland).

出版信息

Med Sci Monit. 2022 Apr 23;28:e935307. doi: 10.12659/MSM.935307.

Abstract

BACKGROUND We aimed to develop a combined model of quantitative parameters derived from 3 different magnetic resonance imaging (MRI) diffusion models and laboratory data related to prostate-specific antigen (PSA) for differentiating between prostate cancer (PCa) and benign lesions. MATERIAL AND METHODS Eighty-four patients pathologically confirmed as having PCa or benign disease were enrolled. All patients underwent multiparametric MRI before biopsy, added intravoxel incoherent motion (IVIM) imaging, and diffusion kurtosis imaging (DKI). The following data were collected: quantitative parameters of diffusion-weighted imaging (DWI), IVIM, and DKI, preoperative total PSA, free/total PSA ratio, and PSA density (PSAD) values. A combined logistic regression model was established by above MRI quantitative parameters and PSA data to diagnose PCa. The Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) was used to assess the lesions for comparison. RESULTS Thirty-two patients had PCa and 52 patients had benign lesions. In multivariate logistic regression analysis, only apparent diffusion coefficient (ADC) and PSAD were significant variables (P<0.05) and were thus retained in the model. The area under curve value of the combined model (0.911) was higher than that of ADC, PSAD, and PI-RADS v2 (0.887, 0.861, and 0.859, respectively) in univariate analysis, but without any statistically significant differences. The combined model generated greater clinical benefit than the independent application of ADC, PSAD, and PI-RADS v2. CONCLUSIONS ADC and PSAD were the 2 most important metrics for distinguishing PCa from benign lesions. The combined model of ADC and PSAD demonstrated satisfactory discrimination and improved clinical net benefit.

摘要

背景

我们旨在开发一种综合模型,该模型结合了 3 种不同的磁共振成像(MRI)扩散模型的定量参数和与前列腺特异性抗原(PSA)相关的实验室数据,以区分前列腺癌(PCa)和良性病变。

材料与方法

共纳入 84 例经病理证实为 PCa 或良性病变的患者。所有患者均在活检前行多参数 MRI 检查,增加了体素内不相干运动(IVIM)成像和扩散峰度成像(DKI)。收集以下数据:扩散加权成像(DWI)、IVIM 和 DKI 的定量参数、术前总 PSA、游离/总 PSA 比值和 PSA 密度(PSAD)值。通过以上 MRI 定量参数和 PSA 数据建立联合逻辑回归模型来诊断 PCa。使用前列腺影像报告和数据系统第 2 版(PI-RADS v2)评估病变进行比较。

结果

32 例患者患有 PCa,52 例患者患有良性病变。在多变量逻辑回归分析中,仅表观扩散系数(ADC)和 PSAD 是显著变量(P<0.05),因此保留在模型中。联合模型(0.911)的曲线下面积值高于 ADC、PSAD 和 PI-RADS v2(分别为 0.887、0.861 和 0.859)的单变量分析,但无统计学差异。与 ADC、PSAD 和 PI-RADS v2 的独立应用相比,联合模型产生了更大的临床获益。

结论

ADC 和 PSAD 是区分 PCa 和良性病变的 2 个最重要的指标。ADC 和 PSAD 的联合模型具有良好的鉴别能力,提高了临床净效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1881/9044910/ff6ec70f139c/medscimonit-28-e935307-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验