Suppr超能文献

利用极简深度学习从差异基因表达水平识别结直肠癌亚型

Colorectal cancer subtype identification from differential gene expression levels using minimalist deep learning.

作者信息

Li Shaochuan, Yang Yuning, Wang Xin, Li Jun, Yu Jun, Li Xiangtao, Wong Ka-Chun

机构信息

Department of Information Science and Technology, Northeast Normal University, Changchun, Jilin, China.

Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China.

出版信息

BioData Min. 2022 Apr 23;15(1):12. doi: 10.1186/s13040-022-00295-w.

Abstract

BACKGROUND

Cancer molecular subtyping plays a critical role in individualized patient treatment. In previous studies, high-throughput gene expression signature-based methods have been proposed to identify cancer subtypes. Unfortunately, the existing ones suffer from the curse of dimensionality, data sparsity, and computational deficiency.

METHODS

To address those problems, we propose a computational framework for colorectal cancer subtyping without any exploitation in model complexity and generality. A supervised learning framework based on deep learning (DeepCSD) is proposed to identify cancer subtypes. Specifically, based on the differentially expressed genes under cancer consensus molecular subtyping, we design a minimalist feed-forward neural network to capture the distinct molecular features in different cancer subtypes. To mitigate the overfitting phenomenon of deep learning as much as possible, L and L regularization and dropout layers are added.

RESULTS

For demonstrating the effectiveness of DeepCSD, we compared it with other methods including Random Forest (RF), Deep forest (gcForest), support vector machine (SVM), XGBoost, and DeepCC on eight independent colorectal cancer datasets. The results reflect that DeepCSD can achieve superior performance over other algorithms. In addition, gene ontology enrichment and pathology analysis are conducted to reveal novel insights into the cancer subtype identification and characterization mechanisms.

CONCLUSIONS

DeepCSD considers all subtype-specific genes as input, which is pathologically necessary for its completeness. At the same time, DeepCSD shows remarkable robustness in handling cross-platform gene expression data, achieving similar performance on both training and test data without significant model overfitting or exploitation of model complexity.

摘要

背景

癌症分子亚型分类在患者个体化治疗中起着关键作用。在以往研究中,已提出基于高通量基因表达特征的方法来识别癌症亚型。不幸的是,现有的方法存在维度灾难、数据稀疏性和计算缺陷等问题。

方法

为解决这些问题,我们提出了一种用于结直肠癌亚型分类的计算框架,而无需在模型复杂性和通用性方面进行任何优化。提出了一种基于深度学习的监督学习框架(DeepCSD)来识别癌症亚型。具体而言,基于癌症共识分子亚型下的差异表达基因,我们设计了一个极简的前馈神经网络来捕捉不同癌症亚型中的独特分子特征。为尽可能减轻深度学习的过拟合现象,添加了L1和L2正则化以及随机失活层。

结果

为证明DeepCSD的有效性,我们在八个独立的结直肠癌数据集上,将其与其他方法进行了比较,包括随机森林(RF)、深度森林(gcForest)、支持向量机(SVM)、XGBoost和DeepCC。结果表明,DeepCSD比其他算法具有更优的性能。此外,还进行了基因本体富集和病理分析,以揭示癌症亚型识别和特征化机制的新见解。

结论

DeepCSD将所有亚型特异性基因作为输入,这在病理学上对于其完整性是必要的。同时,DeepCSD在处理跨平台基因表达数据时表现出显著的稳健性,在训练数据和测试数据上均取得了相似的性能,而没有明显的模型过拟合或对模型复杂性的过度依赖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f07d/9034628/9a4dfc0c62e0/13040_2022_295_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验