Suppr超能文献

基于污水的 SARS-CoV-2 传染病模型及其在加拿大三个城市的应用

A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities.

机构信息

Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.

One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.

出版信息

Epidemics. 2022 Jun;39:100560. doi: 10.1016/j.epidem.2022.100560. Epub 2022 Apr 8.

Abstract

The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinical cases observed through traditional surveillance and the signals from viral concentrations in wastewater is still developing and hampers interpretation of the data and actionable public-health decisions. We present a modelling framework that includes both SARS-CoV-2 transmission at the population level and the fate of SARS-CoV-2 RNA particles in the sewage system after faecal shedding by infected persons in the population. Using our mechanistic representation of the combined clinical/wastewater system, we perform exploratory simulations to quantify the effect of surveillance effectiveness, public-health interventions and vaccination on the discordance between clinical and wastewater signals. We also apply our model to surveillance data from three Canadian cities to provide wastewater-informed estimates for the actual prevalence, the effective reproduction number and incidence forecasts. We find that wastewater-based surveillance, paired with this model, can complement clinical surveillance by supporting the estimation of key epidemiological metrics and hence better triangulate the state of an epidemic using this alternative data source.

摘要

新冠疫情大流行刺激了基于污水的监测,使公共卫生能够通过监测受感染者排入污水中的 SARS-CoV-2 遗传指纹的浓度来跟踪疫情。用于新冠疫情的基于污水的监测仍处于起步阶段。特别是,通过传统监测观察到的临床病例与污水中病毒浓度信号之间的定量联系仍在不断发展,这阻碍了对数据的解释和可行的公共卫生决策。我们提出了一个建模框架,该框架包括人群中 SARS-CoV-2 的传播以及人群中受感染者粪便排出后 SARS-CoV-2 RNA 颗粒在污水系统中的命运。使用我们对临床/污水系统的综合机械表示,我们进行探索性模拟,以量化监测效果、公共卫生干预措施和疫苗接种对临床和污水信号之间不匹配的影响。我们还将我们的模型应用于来自加拿大三个城市的监测数据,以提供基于污水的实际流行率、有效繁殖数和发病率预测的信息。我们发现,基于污水的监测与该模型相结合,可以通过支持对关键流行病学指标的估计来补充临床监测,从而利用这种替代数据源更好地确定疫情的状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验