Suppr超能文献

流行病学模型可以根据农村社区基于废水的监测来预测新冠疫情的爆发。

Epidemiological model can forecast COVID-19 outbreaks from wastewater-based surveillance in rural communities.

作者信息

Meadows Tyler, Coats Erik R, Narum Solana, Top Eva M, Ridenhour Benjamin J, Stalder Thibault

机构信息

Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada; Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA.

Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA; Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA; Bioinformatics and Computational Biology Graduate Program (BCB), Moscow, ID, USA.

出版信息

Water Res. 2025 Jan 1;268(Pt A):122671. doi: 10.1016/j.watres.2024.122671. Epub 2024 Oct 20.

Abstract

Wastewater has emerged as a crucial tool for infectious disease surveillance, offering a valuable means to bridge the equity gap between underserved communities and larger urban municipalities. However, using wastewater surveillance in a predictive manner remains a challenge. In this study, we tested if detecting SARS-CoV-2 in wastewater can forecast outbreaks in rural communities. Under the CDC National Wastewater Surveillance program, we monitored the SARS-CoV-2 in the wastewater of five rural communities and a small city in Idaho (USA). We then used a particle filter method coupled with a stochastic susceptible-exposed-infectious-recovered (SEIR) model to infer active case numbers using quantities of SARS-CoV-2 in wastewater. Our findings revealed that while high daily variations in wastewater viral load made real-time interpretation difficult, the SEIR model successfully factored out this noise, enabling accurate forecasts of the Omicron outbreak in five of the six towns shortly after initial increases in SARS-CoV-2 concentrations were detected in wastewater. The model predicted outbreaks with a lead time of 0 to 11 days (average of 6 days +/- 4) before the surge in reported clinical cases. This study not only underscores the viability of wastewater-based epidemiology (WBE) in rural communities-a demographic often overlooked in WBE research-but also demonstrates the potential of advanced epidemiological modeling to enhance the predictive power of wastewater data. Our work paves the way for more reliable and timely public health guidance, addressing a critical gap in the surveillance of infectious diseases in rural populations.

摘要

废水已成为传染病监测的一项关键工具,为缩小服务不足社区与大型城市市政当局之间的公平差距提供了一种宝贵手段。然而,以预测方式使用废水监测仍然是一项挑战。在本研究中,我们测试了在废水中检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是否能够预测农村社区的疫情暴发。在美国疾病控制与预防中心(CDC)的国家废水监测项目下,我们监测了美国爱达荷州五个农村社区和一个小城市废水中的SARS-CoV-2。然后,我们使用一种粒子过滤方法结合随机易感-暴露-感染-康复(SEIR)模型,根据废水中SARS-CoV-2的数量来推断活跃病例数。我们的研究结果显示,虽然废水病毒载量每日变化很大,使得实时解读很困难,但SEIR模型成功排除了这种干扰,能够在废水检测到SARS-CoV-2浓度最初升高后不久,准确预测六个城镇中五个城镇的奥密克戎毒株疫情暴发。该模型在报告的临床病例激增前0至11天(平均6天±4天)的提前期预测了疫情暴发。本研究不仅强调了基于废水的流行病学(WBE)在农村社区的可行性——这一人群在WBE研究中常常被忽视——还展示了先进的流行病学建模增强废水数据预测能力的潜力。我们的工作为更可靠、更及时的公共卫生指导铺平了道路,填补了农村人口传染病监测中的一个关键空白。

相似文献

本文引用的文献

1
A review of mechanistic learning in mathematical oncology.机制学习在数学肿瘤学中的研究综述。
Front Immunol. 2024 Mar 12;15:1363144. doi: 10.3389/fimmu.2024.1363144. eCollection 2024.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验