Liu Shaohua, Liu Haibo, Wang Yisu, Sun Jingkai, Mao Tianlu
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
Comput Intell Neurosci. 2022 Apr 12;2022:4192367. doi: 10.1155/2022/4192367. eCollection 2022.
Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between pedestrians, we propose a multilevel dynamic spatiotemporal digraph convolutional network (MDST-DGCN). It consists of three parts: a motion encoder to capture the pedestrians' specific motion features, a multilevel dynamic spatiotemporal directed graph encoder (MDST-DGEN) to capture the social interaction features of multiple levels and adaptively fuse them, and a motion decoder to produce the future trajectories. Experimental results on public datasets demonstrate that our model achieves state-of-the-art results in both long-term and short-term predictions for both high-density and low-density crowds.
行人轨迹预测是一项重要但具有挑战性的任务。行人之间的社会互动对轨迹有巨大影响。一种更好的对社会互动进行建模的方法通常能实现更准确的轨迹预测。为了全面地对行人之间的互动进行建模,我们提出了一种多级动态时空有向图卷积网络(MDST-DGCN)。它由三个部分组成:一个运动编码器,用于捕捉行人的特定运动特征;一个多级动态时空有向图编码器(MDST-DGEN),用于捕捉多个层次的社会互动特征并对其进行自适应融合;以及一个运动解码器,用于生成未来轨迹。在公共数据集上的实验结果表明,我们的模型在高密度和低密度人群的长期和短期预测方面均取得了领先的结果。