Suppr超能文献

基于上下文增强Transformer 网络的实时自主系统行人轨迹预测。

Pedestrian Trajectory Prediction for Real-Time Autonomous Systems via Context-Augmented Transformer Networks.

机构信息

School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.

出版信息

Sensors (Basel). 2022 Oct 2;22(19):7495. doi: 10.3390/s22197495.

Abstract

Forecasting the trajectory of pedestrians in shared urban traffic environments from non-invasive sensor modalities is still considered one of the challenging problems facing the development of autonomous vehicles (AVs). In the literature, this problem is often tackled using recurrent neural networks (RNNs). Despite the powerful capabilities of RNNs in capturing the temporal dependency in the pedestrians' motion trajectories, they were argued to be challenged when dealing with longer sequential data. Additionally, whilst the accommodation for contextual information (such as scene semantics and agents interactions) was shown to be effective for robust trajectory prediction, they can also impact the overall real-time performance of prediction system. Thus, in this work, we are introducing a framework based on the transformer networks that were demonstrated recently to be more efficient and outperformed RNNs in many sequential-based tasks. We relied on a fusion of sensor modalities, namely the past positional information, agent interactions information and scene physical semantics information as an input to our framework in order to not only provide a robust trajectory prediction of pedestrians, but also achieve real-time performance for multi-pedestrians' trajectory prediction. We have evaluated our framework on three real-life datasets of pedestrians in shared urban traffic environments and it has outperformed the compared baseline approaches in both short-term and long-term prediction horizons. For the short-term prediction horizon, our approach has achieved lower scores according to the average displacement error and the root-mean squared error (ADE/RMSE) of predictions over the state-of-the art (SOTA) approach by more than 11 cm and 23 cm, respectively. While for the long-term prediction horizon, our approach has achieved lower ADE and FDE over the SOTA approach by more than 62 cm and 165 cm, respectively. Additionally, our approach has achieved superior real time performance by scoring only 0.025 s (i.e., it can provide 40 individual trajectory predictions per second).

摘要

从非侵入式传感器模态预测共享城市交通环境中的行人轨迹仍然被认为是自动驾驶车辆 (AV) 发展面临的挑战之一。在文献中,这个问题通常使用递归神经网络 (RNN) 来解决。尽管 RNN 在捕捉行人运动轨迹的时间依赖性方面具有强大的能力,但它们在处理更长的序列数据时被认为具有挑战性。此外,虽然上下文信息(如场景语义和代理交互)的适应被证明对鲁棒轨迹预测有效,但它们也会影响预测系统的整体实时性能。因此,在这项工作中,我们引入了一个基于转换器网络的框架,该框架最近被证明在许多基于序列的任务中比 RNN 更有效且表现更好。我们依赖于传感器模态的融合,即过去的位置信息、代理交互信息和场景物理语义信息作为输入到我们的框架中,以便不仅提供行人的稳健轨迹预测,而且实现多行人轨迹预测的实时性能。我们在三个共享城市交通环境中行人的真实数据集上评估了我们的框架,它在短期和长期预测范围内都优于比较基线方法。对于短期预测范围,我们的方法在预测的平均位移误差和均方根误差 (ADE/RMSE) 方面比最先进的方法 (SOTA) 分别低 11 厘米和 23 厘米。而对于长期预测范围,我们的方法在 ADE 和 FDE 方面比 SOTA 分别低 62 厘米和 165 厘米。此外,我们的方法通过仅获得 0.025 秒的得分实现了卓越的实时性能(即,它每秒可以提供 40 个单独的轨迹预测)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76eb/9572723/a2993d039401/sensors-22-07495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验