Suppr超能文献

利用数据挖掘技术进行图像特征提取

Building Image Feature Extraction Using Data Mining Technology.

作者信息

Deng Yi, Xing Chengyue, Cai Ling

机构信息

School of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, Guangdong, China.

Guangdong Provincial Institute of Cultural Relics and Archaeology, Guangzhou 510075, Guangdong, China.

出版信息

Comput Intell Neurosci. 2022 Apr 13;2022:8006437. doi: 10.1155/2022/8006437. eCollection 2022.

Abstract

At present, data mining technology is continuously researched in science and application. With the rapid development of remote sensing satellite industry, especially the launch of remote sensing satellites with high-resolution sensors, the amount of information obtained from remote sensing images has increased dramatically, which has largely promoted the application of remote sensing data in various industries. This technique mines useable information from less complete and accurate data while ensuring low program complexity. In order to determine the impact of data mining techniques on feature extraction of graphic images, this paper explores the relevant steps in the image recognition process, especially the image preenhancement and image extraction processes. This paper develops a preliminary set of relevant data and investigates two different extraction methods based on the availability or absence of nursing information. Aiming at the advantages and disadvantages of the two house extraction methods, this work discusses how to effectively integrate remote sensing data. It uses different data sources to describe different characteristics of buildings, analyzes and extracts effective information, and finally derives building information. The research results show that, using the SVM algorithm in data mining for image feature extraction, in the verified filtering window, the accuracy can be effectively improved by about 20%. Buildings are important objects in high-resolution remote sensing images, and their feature extraction and recognition technology is of great significance in many fields such as digital city construction, urban planning, and military reconnaissance.

摘要

目前,数据挖掘技术在科学研究和应用方面不断深入。随着遥感卫星产业的快速发展,特别是搭载高分辨率传感器的遥感卫星的发射,从遥感图像中获取的信息量急剧增加,这在很大程度上推动了遥感数据在各行业的应用。该技术能从不太完整和精确的数据中挖掘可用信息,同时确保程序复杂度较低。为了确定数据挖掘技术对图形图像特征提取的影响,本文探讨了图像识别过程中的相关步骤,特别是图像预增强和图像提取过程。本文开发了一套初步的相关数据,并基于护理信息的有无研究了两种不同的提取方法。针对两种房屋提取方法的优缺点,这项工作讨论了如何有效整合遥感数据。它使用不同的数据来源来描述建筑物的不同特征,分析并提取有效信息,最终得出建筑物信息。研究结果表明,在数据挖掘中使用支持向量机算法进行图像特征提取,在经过验证的滤波窗口中,准确率可有效提高约20%。建筑物是高分辨率遥感图像中的重要对象,其特征提取与识别技术在数字城市建设、城市规划和军事侦察等诸多领域具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e9c/9020935/89faea3e07c6/CIN2022-8006437.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验