Suppr超能文献

利用高分辨率T1加权磁共振成像中大脑皮层和皮层下核团的影像组学诊断无痴呆的皮质下缺血性血管性认知障碍

Diagnosis of Subcortical Ischemic Vascular Cognitive Impairment With No Dementia Using Radiomics of Cerebral Cortex and Subcortical Nuclei in High-Resolution T1-Weighted MR Imaging.

作者信息

Liu Bo, Meng Shan, Cheng Jie, Zeng Yan, Zhou Daiquan, Deng Xiaojuan, Kuang Lianqin, Wu Xiaojia, Tang Lin, Wang Haolin, Liu Huan, Liu Chen, Li Chuanming

机构信息

Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Radiology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Oncol. 2022 Apr 8;12:852726. doi: 10.3389/fonc.2022.852726. eCollection 2022.

Abstract

PURPOSE

To investigate whether the combination of radiomics derived from brain high-resolution T1-weighted imaging and automatic machine learning could diagnose subcortical ischemic vascular cognitive impairment with no dementia (SIVCIND) accurately.

METHODS

A total of 116 right-handed participants involving 40 SIVCIND patients and 76 gender-, age-, and educational experience-matched normal controls (NM) were recruited. A total of 7,106 quantitative features from the bilateral thalamus, hippocampus, globus pallidus, amygdala, nucleus accumbens, putamen, caudate nucleus, and 148 areas of the cerebral cortex were automatically calculated from each subject. Six methods including least absolute shrinkage and selection operator (LASSO) were utilized to lessen the redundancy of features. Three supervised machine learning approaches of logistic regression (LR), random forest (RF), and support vector machine (SVM) employing 5-fold cross-validation were used to train and establish diagnosis models, and 10 times 10-fold cross-validation was used to evaluate the generalization performance of each model. Correlation analysis was performed between the optimal features and the neuropsychological scores of the SIVCIND patients.

RESULTS

Thirteen features from the right amygdala, right hippocampus, left caudate nucleus, left putamen, left thalamus, and bilateral nucleus accumbens were included in the optimal subset. Among all the three models, the RF produced the highest diagnostic performance with an area under the receiver operator characteristic curve (AUC) of 0.990 and an accuracy of 0.948. According to the correlation analysis, the radiomics features of the right amygdala, left caudate nucleus, left putamen, and left thalamus were found to be significantly correlated with the neuropsychological scores of the SIVCIND patients.

CONCLUSIONS

The combination of radiomics derived from brain high-resolution T1-weighted imaging and machine learning could diagnose SIVCIND accurately and automatically. The optimal radiomics features are mostly located in the right amygdala, left caudate nucleus, left putamen, and left thalamus, which might be new biomarkers of SIVCIND.

摘要

目的

探讨源自脑高分辨率T1加权成像的放射组学与自动机器学习相结合能否准确诊断非痴呆型皮质下缺血性血管性认知障碍(SIVCIND)。

方法

共招募了116名右利手参与者,其中包括40例SIVCIND患者和76名性别、年龄及教育经历相匹配的正常对照(NM)。从每位受试者的双侧丘脑、海马体、苍白球、杏仁核、伏隔核、壳核、尾状核以及大脑皮质的148个区域自动计算出总共7106个定量特征。采用包括最小绝对收缩和选择算子(LASSO)在内的六种方法来减少特征冗余。使用逻辑回归(LR)、随机森林(RF)和支持向量机(SVM)这三种监督机器学习方法,采用五折交叉验证来训练并建立诊断模型,使用10次十折交叉验证来评估每个模型的泛化性能。对SIVCIND患者的最佳特征与神经心理学评分进行相关性分析。

结果

最佳子集中包括来自右侧杏仁核、右侧海马体、左侧尾状核、左侧壳核、左侧丘脑和双侧伏隔核的13个特征。在所有三个模型中,RF的诊断性能最高,受试者工作特征曲线下面积(AUC)为0.990,准确率为0.948。根据相关性分析,发现右侧杏仁核、左侧尾状核、左侧壳核和左侧丘脑的放射组学特征与SIVCIND患者的神经心理学评分显著相关。

结论

源自脑高分辨率T1加权成像的放射组学与机器学习相结合能够准确、自动地诊断SIVCIND。最佳放射组学特征大多位于右侧杏仁核、左侧尾状核、左侧壳核和左侧丘脑,这可能是SIVCIND的新生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8871/9027106/71bc445ec63f/fonc-12-852726-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验