Suppr超能文献

杏仁核的T1加权图像放射组学在区分焦虑症及其亚型方面优于体积测量。

Amygdala's T1-weighted image radiomics outperforms volume for differentiation of anxiety disorder and its subtype.

作者信息

Li Qingfeng, Wang Wenzheng, Hu Zhishan

机构信息

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.

出版信息

Front Psychiatry. 2023 Feb 24;14:1091730. doi: 10.3389/fpsyt.2023.1091730. eCollection 2023.

Abstract

INTRODUCTION

Anxiety disorder is the most common psychiatric disorder among adolescents, with generalized anxiety disorder (GAD) being a common subtype of anxiety disorder. Current studies have revealed abnormal amygdala function in patients with anxiety compared with healthy people. However, the diagnosis of anxiety disorder and its subtypes still lack specific features of amygdala from T1-weighted structural magnetic resonance (MR) imaging. The purpose of our study was to investigate the feasibility of using radiomics approach to distinguish anxiety disorder and its subtype from healthy controls on T1-weighted images of the amygdala, and provide a basis for the clinical diagnosis of anxiety disorder.

METHODS

T1-weighted MR images of 200 patients with anxiety disorder (including 103 GAD patients) as well as 138 healthy controls were obtained in the Healthy Brain Network (HBN) dataset. We extracted 107 radiomics features for the left and right amygdala, respectively, and then performed feature selection using the 10-fold LASSO regression algorithm. For the selected features, we performed group-wise comparisons, and use different machine learning algorithms, including linear kernel support vector machine (SVM), to achieve the classification between the patients and healthy controls.

RESULTS

For the classification task of anxiety patients vs. healthy controls, 2 and 4 radiomics features were selected from left and right amygdala, respectively, and the area under receiver operating characteristic curve (AUC) of linear kernel SVM in cross-validation experiments was 0.6739±0.0708 for the left amygdala features and 0.6403±0.0519 for the right amygdala features; for classification task for GAD patients vs. healthy controls, 7 and 3 features were selected from left and right amygdala, respectively, and the cross-validation AUCs were 0.6755±0.0615 for the left amygdala features and 0.6966±0.0854 for the right amygdala features. In both classification tasks, the selected amygdala radiomics features had higher discriminatory significance and effect sizes compared with the amygdala volume.

DISCUSSION

Our study suggest that radiomics features of bilateral amygdala potentially could serve as a basis for the clinical diagnosis of anxiety disorder.

摘要

引言

焦虑症是青少年中最常见的精神疾病,广泛性焦虑症(GAD)是焦虑症的常见亚型。目前的研究表明,与健康人相比,焦虑症患者的杏仁核功能异常。然而,焦虑症及其亚型的诊断在T1加权结构磁共振(MR)成像中仍缺乏杏仁核的特异性特征。我们研究的目的是探讨在杏仁核的T1加权图像上使用放射组学方法区分焦虑症及其亚型与健康对照的可行性,并为焦虑症的临床诊断提供依据。

方法

在健康大脑网络(HBN)数据集中获取了200例焦虑症患者(包括103例GAD患者)以及138例健康对照的T1加权MR图像。我们分别为左右杏仁核提取了107个放射组学特征,然后使用10折LASSO回归算法进行特征选择。对于所选特征,我们进行了组间比较,并使用不同的机器学习算法,包括线性核支持向量机(SVM),以实现患者与健康对照之间的分类。

结果

对于焦虑症患者与健康对照的分类任务,分别从左、右杏仁核中选择了2个和4个放射组学特征,在交叉验证实验中,线性核SVM的受试者操作特征曲线下面积(AUC)对于左杏仁核特征为0.6739±0.0708,对于右杏仁核特征为0.6403±0.0519;对于GAD患者与健康对照的分类任务,分别从左、右杏仁核中选择了7个和3个特征,交叉验证AUC对于左杏仁核特征为0.6755±0.0615,对于右杏仁核特征为0.6966±0.0854。在两个分类任务中,所选的杏仁核放射组学特征与杏仁核体积相比具有更高的鉴别意义和效应量。

讨论

我们的研究表明,双侧杏仁核的放射组学特征可能为焦虑症的临床诊断提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0182/10001895/b3e1ddf927ed/fpsyt-14-1091730-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验