Suppr超能文献

低流量、低跨瓣压差主动脉瓣狭窄的左心室生物力学:一个基于患者特异性的计算模型

Left Ventricle Biomechanics of Low-Flow, Low-Gradient Aortic Stenosis: A Patient-Specific Computational Model.

作者信息

Wisneski Andrew D, Wang Yunjie, Cutugno Salvatore, Pasta Salvatore, Stroh Ashley, Yao Jiang, Nguyen Tom C, Mahadevan Vaikom S, Guccione Julius M

机构信息

Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.

Thornton Tomassetti Life Sciences, Santa Clara, CA, United States.

出版信息

Front Physiol. 2022 Apr 6;13:848011. doi: 10.3389/fphys.2022.848011. eCollection 2022.

Abstract

This study aimed to create an imaging-derived patient-specific computational model of low-flow, low-gradient (LFLG) aortic stenosis (AS) to obtain biomechanics data about the left ventricle. LFLG AS is now a commonly recognized sub-type of aortic stenosis. There remains much controversy over its management, and investigation into ventricular biomechanics may elucidate pathophysiology and better identify patients for valve replacement. ECG-gated cardiac computed tomography images from a patient with LFLG AS were obtained to provide patient-specific geometry for the computational model. Surfaces of the left atrium, left ventricle (LV), and outflow track were segmented. A previously validated multi-scale, multi-physics computational human heart model was adapted to the patient-specific geometry, yielding a model consisting of 91,000 solid elements. This model was coupled to a virtual circulatory system and calibrated to clinically measured parameters from echocardiography and cardiac catheterization data. The simulation replicated key physiologic parameters within 10% of their clinically measured values. Global LV systolic myocardial stress was 7.1 ± 1.8 kPa. Mean stress of the basal, middle, and apical segments were 7.7 ± 1.8 kPa, 9.1 ± 3.8 kPa, and 6.4 ± 0.4 kPa, respectively. This is the first patient-specific computational model of LFLG AS based on clinical imaging. Low myocardial stress correlated with low ejection fraction and eccentric LV remodeling. Further studies are needed to understand how alterations in LV biomechanics correlates with clinical outcomes of AS.

摘要

本研究旨在创建一个基于影像的低流量、低梯度(LFLG)主动脉瓣狭窄(AS)患者特异性计算模型,以获取有关左心室的生物力学数据。LFLG AS现已成为一种公认的主动脉瓣狭窄亚型。其治疗仍存在诸多争议,对心室生物力学的研究可能有助于阐明病理生理学,并更好地识别适合瓣膜置换的患者。获取了一名LFLG AS患者的心电图门控心脏计算机断层扫描图像,为计算模型提供患者特异性几何结构。对左心房、左心室(LV)和流出道表面进行了分割。将一个先前经过验证的多尺度、多物理计算人体心脏模型适配到患者特异性几何结构上,得到一个由91,000个实体单元组成的模型。该模型与虚拟循环系统耦合,并根据超声心动图和心导管检查数据的临床测量参数进行校准。模拟结果显示关键生理参数在临床测量值的10%以内。左心室整体收缩期心肌应力为7.1±1.8 kPa。基底段、中间段和心尖段的平均应力分别为7.7±1.8 kPa、9.1±3.8 kPa和6.4±0.4 kPa。这是首个基于临床影像的LFLG AS患者特异性计算模型。低心肌应力与低射血分数和左心室偏心重塑相关。需要进一步研究以了解左心室生物力学改变与AS临床结局之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a12/9019780/61744fb9216f/fphys-13-848011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验