Özkayar Gürhan, Lötters Joost C, Tichem Marcel, Ghatkesar Murali K
Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands.
Biomicrofluidics. 2022 Apr 18;16(2):021302. doi: 10.1063/5.0074156. eCollection 2022 Mar.
Microfluidic organs-on-chips (OoCs) technology has emerged as the trend for functional modeling of organs in recent years. Simplifying the complexities of the human organs under controlled perfusion of required fluids paves the way for accurate prediction of human organ functionalities and their response to interventions like exposure to drugs. However, in the state-of-the-art OoC, the existing methods to control fluids use external bulky peripheral components and systems much larger than the chips used in experiments. A new generation of compact microfluidic flow control systems is needed to overcome this challenge. This study first presents a structured classification of OoC devices according to their types and microfluidic complexities. Next, we suggest three fundamental fluid flow control mechanisms and define component configurations for different levels of OoC complexity for each respective mechanism. Finally, we propose an architecture integrating modular microfluidic flow control components and OoC devices on a single platform. We emphasize the need for miniaturization of flow control components to achieve portability, minimize sample usage, minimize dead volume, improve the flowing time of fluids to the OoC cell chamber, and enable long-duration experiments.
近年来,微流控芯片器官(OoC)技术已成为器官功能建模的发展趋势。在所需流体的受控灌注下简化人体器官的复杂性,为准确预测人体器官功能及其对诸如接触药物等干预措施的反应铺平了道路。然而,在最先进的OoC中,现有的流体控制方法使用的外部笨重外围组件和系统比实验中使用的芯片大得多。需要新一代紧凑的微流控流量控制系统来克服这一挑战。本研究首先根据OoC设备的类型和微流控复杂性进行了结构化分类。接下来,我们提出了三种基本的流体流动控制机制,并为每种机制定义了不同OoC复杂程度的组件配置。最后,我们提出了一种在单个平台上集成模块化微流控流量控制组件和OoC设备的架构。我们强调需要将流量控制组件小型化,以实现便携性、最小化样品使用量、最小化死体积、改善流体进入OoC细胞腔室的流动时间,并实现长时间实验。