Suppr超能文献

面向用于芯片上器官应用的模块化、集成化、小型化和便携式微流体流动控制架构。

Toward a modular, integrated, miniaturized, and portable microfluidic flow control architecture for organs-on-chips applications.

作者信息

Özkayar Gürhan, Lötters Joost C, Tichem Marcel, Ghatkesar Murali K

机构信息

Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands.

出版信息

Biomicrofluidics. 2022 Apr 18;16(2):021302. doi: 10.1063/5.0074156. eCollection 2022 Mar.

Abstract

Microfluidic organs-on-chips (OoCs) technology has emerged as the trend for functional modeling of organs in recent years. Simplifying the complexities of the human organs under controlled perfusion of required fluids paves the way for accurate prediction of human organ functionalities and their response to interventions like exposure to drugs. However, in the state-of-the-art OoC, the existing methods to control fluids use external bulky peripheral components and systems much larger than the chips used in experiments. A new generation of compact microfluidic flow control systems is needed to overcome this challenge. This study first presents a structured classification of OoC devices according to their types and microfluidic complexities. Next, we suggest three fundamental fluid flow control mechanisms and define component configurations for different levels of OoC complexity for each respective mechanism. Finally, we propose an architecture integrating modular microfluidic flow control components and OoC devices on a single platform. We emphasize the need for miniaturization of flow control components to achieve portability, minimize sample usage, minimize dead volume, improve the flowing time of fluids to the OoC cell chamber, and enable long-duration experiments.

摘要

近年来,微流控芯片器官(OoC)技术已成为器官功能建模的发展趋势。在所需流体的受控灌注下简化人体器官的复杂性,为准确预测人体器官功能及其对诸如接触药物等干预措施的反应铺平了道路。然而,在最先进的OoC中,现有的流体控制方法使用的外部笨重外围组件和系统比实验中使用的芯片大得多。需要新一代紧凑的微流控流量控制系统来克服这一挑战。本研究首先根据OoC设备的类型和微流控复杂性进行了结构化分类。接下来,我们提出了三种基本的流体流动控制机制,并为每种机制定义了不同OoC复杂程度的组件配置。最后,我们提出了一种在单个平台上集成模块化微流控流量控制组件和OoC设备的架构。我们强调需要将流量控制组件小型化,以实现便携性、最小化样品使用量、最小化死体积、改善流体进入OoC细胞腔室的流动时间,并实现长时间实验。

相似文献

8

本文引用的文献

1
Standardisation needs for organ on chip devices.器官芯片设备的标准化需求。
Lab Chip. 2021 Aug 7;21(15):2857-2868. doi: 10.1039/d1lc00241d. Epub 2021 Jul 12.
5
Organs-on-chips: into the next decade.芯片器官:迈向新的十年。
Nat Rev Drug Discov. 2021 May;20(5):345-361. doi: 10.1038/s41573-020-0079-3. Epub 2020 Sep 10.
10
Organ-on-a-chip: recent breakthroughs and future prospects.器官芯片:最新突破与未来展望。
Biomed Eng Online. 2020 Feb 12;19(1):9. doi: 10.1186/s12938-020-0752-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验