Suppr超能文献

硫醚硫后翻译修饰全局调控因子 AdpA 以影响变铅青链霉菌Actinorhodin 的产生和形态分化。

Sulfane Sulfur Posttranslationally Modifies the Global Regulator AdpA to Influence Actinorhodin Production and Morphological Differentiation of Streptomyces coelicolor.

机构信息

State Key Laboratory of Microbial Technology, Shandong Universitygrid.27255.37, Qingdao, People's Republic of China.

School of Molecular Biosciences, Washington State Universitygrid.30064.31, Pullman, Washington, USA.

出版信息

mBio. 2022 Jun 28;13(3):e0386221. doi: 10.1128/mbio.03862-21. Epub 2022 Apr 25.

Abstract

The transcription factor AdpA is a key regulator controlling both secondary metabolism and morphological differentiation in . Due to its critical functions, its expression undergoes multilevel regulations at transcriptional, posttranscriptional, and translational levels, yet no posttranslational regulation has been reported. Sulfane sulfur, such as hydro polysulfide (HSH,  ≥ 2) and organic polysulfide (RSH,  ≥ 2), is common inside microorganisms, but its physiological functions are largely unclear. Here, we discovered that sulfane sulfur posttranslationally modifies AdpA in Streptomyces coelicolor via specifically reacting with Cys of AdpA to form a persulfide (Cys-SSH). This modification decreases the affinity of AdpA to its self-promoter , allowing increased expression of , further promoting the expression of its target genes and . ActII-4 activates actinorhodin biosynthesis, and WblA regulates morphological development. Bioinformatics analyses indicated that AdpA-Cys is highly conserved in , suggesting the prevalence of such modification in this genus. Thus, our study unveils a new type of regulation on the AdpA activity and sheds a light on how sulfane sulfur stimulates the production of antibiotics in . species produce a myriad of natural products with (potential) clinical applications. While the database of biosynthetic gene clusters is quickly expanding, their regulation mechanisms are rarely known. Sulfane sulfur species are commonly present in microorganisms with unclear functions. Here, we discovered that sulfane sulfur increases actinorhodin (ACT) production in S. coelicolor. The underlying mechanism is that sulfane sulfur specifically reacts with AdpA, a global transcription factor controlling both ACT gene cluster and morphological differentiation-related genes, to form sulfhydrated AdpA. This modification changes the dynamics of AdpA-controlled gene networks and leads to high expression of ACT biosynthetic genes. Given the wide prevalence of AdpA and sulfane sulfur in , this mechanism may represent a common regulating pattern of all AdpA-controlled biosynthetic pathways. Thus, this finding provides a new strategy for mining and activating valuable biosynthetic gene clusters.

摘要

转录因子 AdpA 是控制 次级代谢和形态分化的关键调节剂。由于其关键功能,其表达在转录、转录后和翻译水平受到多层次的调节,但尚未报道其翻译后调节。硫烷硫,如氢多硫化物 (HSH,≥2) 和有机多硫化物 (RSH,≥2),在微生物中很常见,但它们的生理功能在很大程度上尚不清楚。在这里,我们发现硫烷硫通过特异性地与 AdpA 的 Cys 反应形成过硫化物 (Cys-SSH),从而在变铅青链霉菌中翻译后修饰 AdpA。这种修饰降低了 AdpA 与其自身启动子的亲和力,允许 表达增加,进一步促进其靶基因 和 的表达。ActII-4 激活放线紫红素生物合成,而 WblA 调节形态发育。生物信息学分析表明,AdpA-Cys 在 中高度保守,表明这种修饰在该属中很普遍。因此,我们的研究揭示了 AdpA 活性的一种新的调节类型,并阐明了硫烷硫如何刺激 中抗生素的产生。 种产生了具有(潜在)临床应用的无数天然产物。虽然生物合成基因簇的数据库正在迅速扩展,但它们的调节机制却鲜为人知。硫烷硫在微生物中很常见,但功能尚不清楚。在这里,我们发现硫烷硫增加了变铅青链霉菌中的放线紫红素 (ACT) 产量。其潜在机制是硫烷硫特异性地与 AdpA 反应,AdpA 是一种控制 ACT 基因簇和形态分化相关基因的全局转录因子,形成硫代 AdpA。这种修饰改变了 AdpA 控制的基因网络的动态,导致 ACT 生物合成基因的高表达。鉴于 AdpA 和硫烷硫在 中的广泛存在,这种机制可能代表了所有 AdpA 控制的生物合成途径的常见调节模式。因此,这一发现为挖掘和激活有价值的生物合成基因簇提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/9239190/a28da24f0958/mbio.03862-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验