Suppr超能文献

异养细菌皮纳图博贪铜菌JMP134以硫代硫酸盐作为关键中间体将硫化物氧化为硫酸盐。

The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate.

作者信息

Xin Yufeng, Gao Rui, Cui Feifei, Lü Chuanjuan, Liu Honglei, Liu Huaiwei, Xia Yongzhen, Xun Luying

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.

College of Life Sciences, Qufu Normal University, Qufu, People's Republic of China.

出版信息

Appl Environ Microbiol. 2020 Oct 28;86(22). doi: 10.1128/AEM.01835-20.

Abstract

Heterotrophic bacteria actively participate in the biogeochemical cycle of sulfur on Earth. The heterotrophic bacterium JMP134 contains several enzymes involved in sulfur oxidation, but how these enzymes work together to oxidize sulfide in the bacterium has not been studied. Using gene-deletion and whole-cell assays, we determined that the bacterium uses sulfide:quinone oxidoreductase to oxidize sulfide to polysulfide, which is further oxidized to sulfite by persulfide dioxygenase. Sulfite spontaneously reacts with polysulfide to produce thiosulfate. The sulfur-oxidizing (Sox) system oxidizes thiosulfate to sulfate. Flavocytochrome sulfide dehydrogenase enhances thiosulfate oxidation by the Sox system but couples with the Sox system for sulfide oxidation to sulfate in the absence of sulfide:quinone oxidoreductase. Thus, JMP134 contains a main pathway and a contingent pathway for sulfide oxidation. We establish a new pathway of sulfide oxidation with thiosulfate as a key intermediate in JMP134. The bacterium mainly oxidizes sulfide by using sulfide:quinone oxidoreductase, persulfide dioxygenase, and the Sox system with thiosulfate as a key intermediate. Although the purified and reconstituted Sox system oxidizes sulfide, its rate of sulfide oxidation in JMP134 is too low to be physiologically relevant. The findings reveal how these sulfur-oxidizing enzymes participate in sulfide oxidation in a single bacterium.

摘要

异养细菌积极参与地球上硫的生物地球化学循环。异养细菌JMP134含有几种参与硫氧化的酶,但这些酶如何协同作用在该细菌中氧化硫化物尚未得到研究。通过基因缺失和全细胞测定,我们确定该细菌利用硫化物:醌氧化还原酶将硫化物氧化为多硫化物,多硫化物再被过硫化物双加氧酶进一步氧化为亚硫酸盐。亚硫酸盐与多硫化物自发反应生成硫代硫酸盐。硫氧化(Sox)系统将硫代硫酸盐氧化为硫酸盐。黄素细胞色素硫化物脱氢酶增强了Sox系统对硫代硫酸盐的氧化作用,但在没有硫化物:醌氧化还原酶的情况下,它与Sox系统偶联将硫化物氧化为硫酸盐。因此,JMP134含有一条硫化物氧化的主要途径和一条应急途径。我们在JMP134中建立了一条以硫代硫酸盐为关键中间体的新的硫化物氧化途径。该细菌主要通过利用硫化物:醌氧化还原酶、过硫化物双加氧酶和以硫代硫酸盐为关键中间体的Sox系统来氧化硫化物。尽管纯化和重组的Sox系统能氧化硫化物,但其在JMP134中硫化物氧化的速率过低,不具有生理相关性。这些发现揭示了这些硫氧化酶如何在单个细菌中参与硫化物氧化。

相似文献

10
HS biotreatment with sulfide-oxidizing heterotrophic bacteria.HS 生物处理与硫氧化异养菌。
Biodegradation. 2018 Dec;29(6):511-524. doi: 10.1007/s10532-018-9849-6. Epub 2018 Aug 23.

引用本文的文献

本文引用的文献

1
The functional diversity of the prokaryotic sulfur carrier protein TusA.原核生物硫载体蛋白 TusA 的功能多样性。
Adv Microb Physiol. 2019;75:233-277. doi: 10.1016/bs.ampbs.2019.07.004. Epub 2019 Aug 23.
3
Sulfur Oxidation in the Acidophilic Autotrophic spp.嗜酸自养菌中的硫氧化作用
Front Microbiol. 2019 Jan 10;9:3290. doi: 10.3389/fmicb.2018.03290. eCollection 2018.
5
HS biotreatment with sulfide-oxidizing heterotrophic bacteria.HS 生物处理与硫氧化异养菌。
Biodegradation. 2018 Dec;29(6):511-524. doi: 10.1007/s10532-018-9849-6. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验