Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
Hum Brain Mapp. 2022 Aug 15;43(12):3735-3744. doi: 10.1002/hbm.25880. Epub 2022 Apr 26.
Neurodegeneration of the substantia nigra affects putamen activity in Parkinson's disease (PD), yet in vivo evidence of how the substantia nigra modulates putamen glucose metabolism in humans is missing. We aimed to investigate how substantia nigra modulates the putamen glucose metabolism using a cross-sectional design. Resting-state fMRI, susceptibility-weighted imaging, and [ F]-fluorodeoxyglucose-PET (FDG-PET) data were acquired. Forty-two PD patients and 25 healthy controls (HCs) were recruited for simultaneous PET/MRI scanning. The main measurements of the current study were images representing iron deposition (28 PD and 25 HCs), standardized uptake value ratio (SUVr) images representing FDG-uptake (33 PD and 25 HCs), and resting state functional connectivity maps from resting state fMRI (34 PD and 25 HCs). An interaction term based on the general linear model was used to investigate the joint modulation effect of nigral iron deposition and nigral-putamen functional connectivity on putamen FDG-uptake. Compared with HCs, we found increased iron deposition in the substantia nigra (p = .007), increased FDG-uptake in the putamen (left: P < 0.001; right: P < 0.001), and decreased functional connectivity between the substantia nigra and the anterior putamen (left P < 0.001, right: P = 0.007). We then identified significant interaction effect of nigral iron deposition and nigral-putamen connectivity on FDG-uptake in the putamen (p = .004). The current study demonstrated joint modulation effect of the substantia nigra iron deposition and nigral-putamen functional connectivity on putamen glucose metabolic distribution, thereby revealing in vivo pathological mechanism of nigrostriatal neurodegeneration of PD.
黑质的神经退行性变影响帕金森病(PD)患者的壳核活动,但目前缺乏人类黑质如何调节壳核葡萄糖代谢的体内证据。我们旨在使用横断面设计研究黑质如何调节壳核的葡萄糖代谢。采集静息态 fMRI、磁化率加权成像和 [F]-氟脱氧葡萄糖-PET(FDG-PET)数据。招募了 42 名 PD 患者和 25 名健康对照者(HCs)进行同时 PET/MRI 扫描。本研究的主要测量值包括代表铁沉积的图像(28 名 PD 和 25 名 HCs)、代表 FDG 摄取的标准化摄取值比(SUVr)图像(33 名 PD 和 25 名 HCs)和静息状态 fMRI 的静息状态功能连接图(34 名 PD 和 25 名 HCs)。使用基于广义线性模型的交互项来研究黑质铁沉积和黑质-壳核功能连接对壳核 FDG 摄取的联合调节作用。与 HCs 相比,我们发现黑质铁沉积增加(p =.007),壳核 FDG 摄取增加(左侧:P < 0.001;右侧:P < 0.001),黑质和前壳核之间的功能连接减少(左侧:P < 0.001,右侧:P = 0.007)。然后,我们确定了黑质铁沉积和黑质-壳核连接对壳核 FDG 摄取的显著交互作用(p =.004)。本研究表明,黑质铁沉积和黑质-壳核功能连接对壳核葡萄糖代谢分布具有联合调节作用,从而揭示了 PD 黑质纹状体神经退行性变的体内病理机制。