Suppr超能文献

MEGDTA:基于蛋白质三维结构和集成图神经网络的多模态药物-靶点亲和力预测

MEGDTA: multi-modal drug-target affinity prediction based on protein three-dimensional structure and ensemble graph neural network.

作者信息

Hou Zhanwei, Li Yijun, Zhai Haixia, Luo Junwei, Ding Yulian, Pan Yi

机构信息

School of Software, Henan Polytechnic University, Jiaozuo, 454000, China.

Central for High Performance Computing, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.

出版信息

BMC Genomics. 2025 Aug 11;26(1):738. doi: 10.1186/s12864-025-11943-w.

Abstract

BACKGROUND

Drug development is a time-consuming and costly endeavor, and utilizing computer-aided methods to predict drug-target affinity (DTA) can significantly accelerate this process. The key to accurate DTA prediction lies in selecting appropriate computational models to effectively extract features from drug molecular structures and target protein structures. Existing methods usually ignore the features of the protein three-dimensional structure.

RESULTS

This paper proposes a multi-modal drug-target affinity prediction model based on protein three-dimensional structure and ensemble graph neural networks (MEGDTA). This model aims to capture diverse features from drug and target structure using neural network architectures, especially for protein three-dimensional structure. First, one drug is represented into two forms by a molecular graph and a Morgan Fingerprint, and their features are extracted by constructing a graph feature space and a fully connected network, respectively. Second, for a protein, a residue graph is constructed based on its three-dimensional structure. And, the protein sequence and residue graph are processed using a long short-term memory (LSTM) network and multiple parallel graph neural networks (GNNs) with variant modules to learn the latent features of proteins. Third, a cross-attention mechanism fuses the extracted features of the drug and protein, followed by fully connected layers to finalize the prediction. The source code of MEGDTA is available from https://github.com/liyijuncode/MEGDTA .

CONCLUSIONS

MEGDTA is validated on three publicly available benchmark datasets, Davis, KIBA and Metz. A comparative study is conducted with other existing models. The results show that MEGDTA performs strongly in terms of mean squared error (MSE) and concordance index (CI), and r, which demonstrate the effectiveness of MEGDTA.

摘要

背景

药物研发是一项耗时且成本高昂的工作,利用计算机辅助方法预测药物-靶点亲和力(DTA)能够显著加速这一过程。准确预测DTA的关键在于选择合适的计算模型,以便从药物分子结构和靶点蛋白质结构中有效提取特征。现有方法通常忽略蛋白质三维结构的特征。

结果

本文提出了一种基于蛋白质三维结构和集成图神经网络的多模态药物-靶点亲和力预测模型(MEGDTA)。该模型旨在使用神经网络架构从药物和靶点结构中捕捉多样的特征,特别是针对蛋白质三维结构。首先,一种药物通过分子图和摩根指纹表示为两种形式,其特征分别通过构建图特征空间和全连接网络来提取。其次,对于一种蛋白质,基于其三维结构构建残基图。并且,使用长短期记忆(LSTM)网络和具有不同模块的多个并行图神经网络(GNN)对蛋白质序列和残基图进行处理,以学习蛋白质的潜在特征。第三,一种交叉注意力机制融合药物和蛋白质提取的特征,随后通过全连接层完成预测。MEGDTA的源代码可从https://github.com/liyijuncode/MEGDTA获取。

结论

MEGDTA在三个公开可用的基准数据集Davis、KIBA和Metz上得到验证。与其他现有模型进行了对比研究。结果表明,MEGDTA在均方误差(MSE)、一致性指数(CI)和r方面表现出色,证明了MEGDTA的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验