Zhang Yuanyuan, Wang Qihao, Zhang Ci'ao, Feng Baoming, Shang Junliang, Zhang Li
School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266000, China.
School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China.
Interdiscip Sci. 2025 May 12. doi: 10.1007/s12539-025-00712-8.
Conventional drug discovery is expensive and takes a long period. Drug-target interaction (DTI) prediction through computational methods significantly improves efficiency and reduces costs, holding substantial research value. Despite progress in existing prediction methods, two major challenges remain: first, most methods fail to effectively combine shallow and deep features of protein sequences, overlooking the synergistic effect of both; second, existing feature fusion techniques are relatively simple and struggle to fully capture the complexity and richness of fused features. We suggest an interpretable hybrid deep feature fusion network (IHDFN) as a solution to these problems. In the hybrid deep feature extraction module for protein sequences, shallow and deep features of protein sequences are extracted through two distinct views respectively, which capture multi-level information of proteins comprehensively. To further enhance the feature fusion effect, we introduce the StarNet fusion model in this module, enabling efficient fusion of shallow and deep features and enriching feature representation. To further improve the representation power of drug characteristics and the stability of the model, we use a graph convolutional network (GCN) in the drug feature extraction section in conjunction with residual connections and layer normalization. Furthermore, by integrating multimodal features from drugs and proteins utilizing an attention mechanism in the heterogeneous feature fusion module, we increase the complexity of features and achieve interpretability in predictions by attention focusing. Finally, we experimented on three datasets, and the findings indicate that IHDFN has exceptional performance and robustness compared to other cutting-edge techniques, underscoring its great promise and usefulness in DTI tasks. The code for this study is available on GitHub at https://github.com/wangqhfff/IHDFN.git .
传统的药物发现成本高昂且耗时长久。通过计算方法进行药物 - 靶点相互作用(DTI)预测可显著提高效率并降低成本,具有重大的研究价值。尽管现有预测方法取得了进展,但仍存在两个主要挑战:其一,大多数方法未能有效结合蛋白质序列的浅层和深层特征,忽视了两者的协同效应;其二,现有的特征融合技术相对简单,难以充分捕捉融合特征的复杂性和丰富性。我们提出一种可解释的混合深度特征融合网络(IHDFN)来解决这些问题。在蛋白质序列的混合深度特征提取模块中,分别通过两种不同视角提取蛋白质序列的浅层和深层特征,从而全面捕捉蛋白质的多层次信息。为进一步增强特征融合效果,我们在该模块中引入了StarNet融合模型,实现浅层和深层特征的高效融合并丰富特征表示。为进一步提高药物特征的表示能力和模型的稳定性,我们在药物特征提取部分使用了图卷积网络(GCN),并结合残差连接和层归一化。此外,在异构特征融合模块中利用注意力机制整合药物和蛋白质的多模态特征,我们增加了特征的复杂性,并通过注意力聚焦实现预测的可解释性。最后,我们在三个数据集上进行了实验,结果表明与其他前沿技术相比,IHDFN具有卓越的性能和鲁棒性,凸显了其在DTI任务中的巨大潜力和实用性。本研究的代码可在GitHub上获取,链接为https://github.com/wangqhfff/IHDFN.git 。