Institute of Medical Informatics, Biometry and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-University Munich, Germany.
Stat Med. 2010 Mar 30;29(7-8):851-9. doi: 10.1002/sim.3793.
In medical research, risk difference (RD) and number needed to treat (NNT) measures for survival times have been mainly proposed without consideration of covariates. In this paper, we develop adjusted RD and NNT measures for use in observational studies with survival time outcomes within the framework of the Cox proportional hazards regression model taking the distribution of confounders into account. We consider the typical situation of a cohort study in which the effect of an exposure on a survival time outcome is investigated and important covariates have to be taken into account. The exposure effect described by means of the RD and NNT measures in dependence on whether the effect of allocating an exposure to unexposed persons (number needed to be exposed) or that of removing an exposure from exposed persons (exposure impact number) is considered. Estimation of these adjusted RD and NNT measures is performed by using the average RD approach recently developed for logistic regression. To determine standard errors and confidence intervals for these estimators we use two approaches, the delta method with respect to the regression coefficients of the Cox model and bootstrapping and compare each other. The performance of these estimators is assessed by performing Monte Carlo simulations demonstrating clear advantages of the bootstrap method. The proposed method for point and interval estimation of adjusted RD and NNT measures in the Cox model is illustrated by means of data of the Düsseldorf Obesity Mortality Study (DOMS).
在医学研究中,生存时间的风险差异(RD)和需要治疗的数量(NNT)测量主要是在没有考虑协变量的情况下提出的。在本文中,我们在 Cox 比例风险回归模型的框架内,针对生存时间结果的观察性研究,开发了调整后的 RD 和 NNT 测量方法,同时考虑了混杂因素的分布。我们考虑了队列研究的典型情况,其中研究了暴露对生存时间结果的影响,并且必须考虑重要的协变量。通过考虑分配暴露于未暴露人群的效果(需要暴露的数量)或从暴露人群中去除暴露的效果(暴露影响数量),描述了 RD 和 NNT 措施的效果。这些调整后的 RD 和 NNT 措施的估计是通过使用最近为逻辑回归开发的平均 RD 方法来完成的。为了确定这些估计量的标准误差和置信区间,我们使用了两种方法,即 Cox 模型回归系数的 delta 方法和引导法,并相互比较。通过进行蒙特卡罗模拟评估了这些估计量的性能,该模拟清楚地表明了引导法的优势。通过杜塞尔多夫肥胖死亡率研究(DOMS)的数据,说明了 Cox 模型中调整后的 RD 和 NNT 措施的点估计和区间估计的方法。