Zhang Zhongheng, Ambrogi Federico, Bokov Alex F, Gu Hongqiu, de Beurs Edwin, Eskaf Khaled
Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
Department of Biostatistics, University of Milan, Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics and Biometry "Giulio A. Maccacaro", Campus Cascina Rosa, Via Vanzetti 5, 20133 Milano, Italy.
Ann Transl Med. 2018 Apr;6(7):120. doi: 10.21037/atm.2018.01.36.
The hazard ratio (HR) is a measure of instantaneous relative risk of an increase in one unit of the covariate of interest, which is widely reported in clinical researches involving time-to-event data. However, the measure fails to capture absolute risk reduction. Other measures such as number needed to treat (NNT) and risk difference (RD) provide another perspective on the effectiveness of an intervention, and can facilitate clinical decision making. The article aims to provide a step-by-step tutorial on how to compute RD and NNT in survival analysis with R. For simplicity, only one measure (RD or NNT) needs to be illustrated, because the other measure is a reverse of the illustrated one (NNT=1/RD). An artificial dataset is composed by using the package. RD and NNT are estimated with Austin method after fitting a Cox-proportional hazard regression model. The confidence intervals can be estimated using bootstrap method. Alternatively, if the standard errors (SEs) of the survival probabilities of the treated and control group are given, confidence intervals can be estimated using algebraic calculations. The pseudo-value model provides another method to estimate RD and NNT. Details of R code and its output are shown and explained in the main text.
风险比(HR)是衡量感兴趣的协变量增加一个单位时的瞬时相对风险的指标,在涉及事件发生时间数据的临床研究中被广泛报道。然而,该指标未能反映绝对风险降低情况。其他指标,如治疗所需人数(NNT)和风险差值(RD),则为干预效果提供了另一种视角,有助于临床决策。本文旨在提供一个关于如何使用R在生存分析中计算RD和NNT的分步教程。为简单起见,只需说明其中一个指标(RD或NNT)即可,因为另一个指标是已说明指标的倒数(NNT = 1/RD)。使用该软件包构建了一个人工数据集。在拟合Cox比例风险回归模型后,使用奥斯汀方法估计RD和NNT。可以使用自助法估计置信区间。另外,如果给出了治疗组和对照组生存概率的标准误(SE),则可以使用代数计算来估计置信区间。伪值模型提供了另一种估计RD和NNT的方法。R代码及其输出的详细信息在正文中展示并解释。