Suppr超能文献

在生存分析中估计风险差异和治疗所需人数。

Estimate risk difference and number needed to treat in survival analysis.

作者信息

Zhang Zhongheng, Ambrogi Federico, Bokov Alex F, Gu Hongqiu, de Beurs Edwin, Eskaf Khaled

机构信息

Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.

Department of Biostatistics, University of Milan, Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics and Biometry "Giulio A. Maccacaro", Campus Cascina Rosa, Via Vanzetti 5, 20133 Milano, Italy.

出版信息

Ann Transl Med. 2018 Apr;6(7):120. doi: 10.21037/atm.2018.01.36.

Abstract

The hazard ratio (HR) is a measure of instantaneous relative risk of an increase in one unit of the covariate of interest, which is widely reported in clinical researches involving time-to-event data. However, the measure fails to capture absolute risk reduction. Other measures such as number needed to treat (NNT) and risk difference (RD) provide another perspective on the effectiveness of an intervention, and can facilitate clinical decision making. The article aims to provide a step-by-step tutorial on how to compute RD and NNT in survival analysis with R. For simplicity, only one measure (RD or NNT) needs to be illustrated, because the other measure is a reverse of the illustrated one (NNT=1/RD). An artificial dataset is composed by using the package. RD and NNT are estimated with Austin method after fitting a Cox-proportional hazard regression model. The confidence intervals can be estimated using bootstrap method. Alternatively, if the standard errors (SEs) of the survival probabilities of the treated and control group are given, confidence intervals can be estimated using algebraic calculations. The pseudo-value model provides another method to estimate RD and NNT. Details of R code and its output are shown and explained in the main text.

摘要

风险比(HR)是衡量感兴趣的协变量增加一个单位时的瞬时相对风险的指标,在涉及事件发生时间数据的临床研究中被广泛报道。然而,该指标未能反映绝对风险降低情况。其他指标,如治疗所需人数(NNT)和风险差值(RD),则为干预效果提供了另一种视角,有助于临床决策。本文旨在提供一个关于如何使用R在生存分析中计算RD和NNT的分步教程。为简单起见,只需说明其中一个指标(RD或NNT)即可,因为另一个指标是已说明指标的倒数(NNT = 1/RD)。使用该软件包构建了一个人工数据集。在拟合Cox比例风险回归模型后,使用奥斯汀方法估计RD和NNT。可以使用自助法估计置信区间。另外,如果给出了治疗组和对照组生存概率的标准误(SE),则可以使用代数计算来估计置信区间。伪值模型提供了另一种估计RD和NNT的方法。R代码及其输出的详细信息在正文中展示并解释。

相似文献

7
Guidelines to understand and compute the number needed to treat.理解和计算需要治疗的人数的指南。
Evid Based Ment Health. 2021 Nov;24(4):131-136. doi: 10.1136/ebmental-2020-300232. Epub 2021 Feb 22.
9
Number needed to treat in cardiac rehabilitation.心脏康复中的需治疗人数
J Cardiopulm Rehabil. 2002 Jan-Feb;22(1):22-30. doi: 10.1097/00008483-200201000-00003.

引用本文的文献

本文引用的文献

3
The hazards of hazard ratios.风险比的危害
Epidemiology. 2010 Jan;21(1):13-5. doi: 10.1097/EDE.0b013e3181c1ea43.
4
Pseudo-observations in survival analysis.生存分析中的伪观测。
Stat Methods Med Res. 2010 Feb;19(1):71-99. doi: 10.1177/0962280209105020. Epub 2009 Aug 4.
6
SAS and R functions to compute pseudo-values for censored data regression.用于计算删失数据回归伪值的SAS和R函数。
Comput Methods Programs Biomed. 2008 Mar;89(3):289-300. doi: 10.1016/j.cmpb.2007.11.017. Epub 2008 Jan 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验