Zhang Tao, Liu Yipu, Yu Jie, Ye Qitong, Yang Liang, Li Yue, Fan Hong Jin
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Adv Mater. 2022 Jul;34(27):e2202195. doi: 10.1002/adma.202202195. Epub 2022 May 31.
Strain in layered transition-metal dichalcogenides (TMDs) is a type of effective approach to enhance the catalytic performance by activating their inert basal plane. However, compared with traditional uniaxial strain, the influence of biaxial strain and the TMD layer number on the local electronic configuration remains unexplored. Herein, via a new in situ self-vulcanization strategy, biaxially strained MoS nanoshells in the form of a single-crystalline Ni S @MoS core-shell heterostructure are realized, where the MoS layer is precisely controlled between the 1 and 5 layers. In particular, an electrode with the bilayer MoS nanoshells shows a remarkable hydrogen evolution reaction activity with a small overpotential of 78.1 mV at 10 mA cm , and negligible activity degradation after durability testing. Density functional theory calculations reveal the contribution of the optimized biaxial strain together with the induced sulfur vacancies and identify the origin of superior catalytic sites in these biaxially strained MoS nanoshells. This work highlights the importance of the atomic-scale layer number and multiaxial strain in unlocking the potential of 2D TMD electrocatalysts.
层状过渡金属二硫属化物(TMDs)中的应变是通过激活其惰性基面来提高催化性能的一种有效方法。然而,与传统的单轴应变相比,双轴应变和TMD层数对局部电子构型的影响尚未得到探索。在此,通过一种新的原位自硫化策略,实现了单晶NiS@MoS核壳异质结构形式的双轴应变MoS纳米壳,其中MoS层精确控制在1至5层之间。特别是,具有双层MoS纳米壳的电极在10 mA cm时表现出显著的析氢反应活性,过电位小至78.1 mV,并且在耐久性测试后活性降解可忽略不计。密度泛函理论计算揭示了优化的双轴应变与诱导的硫空位的贡献,并确定了这些双轴应变MoS纳米壳中优异催化位点的来源。这项工作突出了原子尺度的层数和多轴应变在释放二维TMD电催化剂潜力方面的重要性。