Yongyin Lv, Caixia Yu
Department of Fine Arts, Bozhou University, Bozhou, Anhui, China.
Front Neurorobot. 2024 Dec 13;18:1513488. doi: 10.3389/fnbot.2024.1513488. eCollection 2024.
Segmentation tasks in computer vision play a crucial role in various applications, ranging from object detection to medical imaging and cultural heritage preservation. Traditional approaches, including convolutional neural networks (CNNs) and standard transformer-based models, have achieved significant success; however, they often face challenges in capturing fine-grained details and maintaining efficiency across diverse datasets. These methods struggle with balancing precision and computational efficiency, especially when dealing with complex patterns and high-resolution images.
To address these limitations, we propose a novel segmentation model that integrates a hierarchical vision transformer backbone with multi-scale self-attention, cascaded attention decoding, and diffusion-based robustness enhancement. Our approach aims to capture both local details and global contexts effectively while maintaining lower computational overhead.
Experiments conducted on four diverse datasets, including Ancient Architecture, MS COCO, Cityscapes, and ScanNet, demonstrate that our model outperforms state-of-the-art methods in accuracy, recall, and computational efficiency. The results highlight the model's ability to generalize well across different tasks and provide robust segmentation, even in challenging scenarios. Our work paves the way for more efficient and precise segmentation techniques, making it valuable for applications where both detail and speed are critical.
计算机视觉中的分割任务在从目标检测到医学成像以及文化遗产保护等各种应用中发挥着至关重要的作用。包括卷积神经网络(CNN)和基于标准Transformer的模型在内的传统方法已经取得了显著成功;然而,它们在捕捉细粒度细节以及在不同数据集上保持效率方面常常面临挑战。这些方法在平衡精度和计算效率方面存在困难,尤其是在处理复杂模式和高分辨率图像时。
为了解决这些局限性,我们提出了一种新颖的分割模型,该模型将分层视觉Transformer主干与多尺度自注意力、级联注意力解码以及基于扩散的鲁棒性增强相结合。我们的方法旨在有效捕捉局部细节和全局上下文,同时保持较低的计算开销。
在包括古建筑、MS COCO、城市景观和ScanNet在内的四个不同数据集上进行的实验表明,我们的模型在准确性、召回率和计算效率方面优于现有方法。结果突出了该模型在不同任务中良好的泛化能力,并且即使在具有挑战性的场景中也能提供稳健的分割。我们的工作为更高效、精确的分割技术铺平了道路,使其在细节和速度都至关重要的应用中具有价值。