Suppr超能文献

一种用于T1加权脑磁共振图像中颈动脉分割的2.5D自训练策略

A 2.5D Self-Training Strategy for Carotid Artery Segmentation in T1-Weighted Brain Magnetic Resonance Images.

作者信息

de Araújo Adriel Silva, Pinho Márcio Sarroglia, Marques da Silva Ana Maria, Fiorentini Luis Felipe, Becker Jefferson

机构信息

School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, Brazil.

Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil.

出版信息

J Imaging. 2024 Jul 3;10(7):161. doi: 10.3390/jimaging10070161.

Abstract

Precise annotations for large medical image datasets can be time-consuming. Additionally, when dealing with volumetric regions of interest, it is typical to apply segmentation techniques on 2D slices, compromising important information for accurately segmenting 3D structures. This study presents a deep learning pipeline that simultaneously tackles both challenges. Firstly, to streamline the annotation process, we employ a semi-automatic segmentation approach using bounding boxes as masks, which is less time-consuming than pixel-level delineation. Subsequently, recursive self-training is utilized to enhance annotation quality. Finally, a 2.5D segmentation technique is adopted, wherein a slice of a volumetric image is segmented using a pseudo-RGB image. The pipeline was applied to segment the carotid artery tree in T1-weighted brain magnetic resonance images. Utilizing 42 volumetric non-contrast T1-weighted brain scans from four datasets, we delineated bounding boxes around the carotid arteries in the axial slices. Pseudo-RGB images were generated from these slices, and recursive segmentation was conducted using a Res-Unet-based neural network architecture. The model's performance was tested on a separate dataset, with ground truth annotations provided by a radiologist. After recursive training, we achieved an Intersection over Union (IoU) score of (0.68 ± 0.08) on the unseen dataset, demonstrating commendable qualitative results.

摘要

对大型医学图像数据集进行精确标注可能非常耗时。此外,在处理感兴趣的体积区域时,通常会在二维切片上应用分割技术,这会损失用于准确分割三维结构的重要信息。本研究提出了一种深度学习流程,可同时应对这两个挑战。首先,为了简化标注过程,我们采用了一种半自动分割方法,使用边界框作为掩码,这比像素级描绘耗时更少。随后,利用递归自训练来提高标注质量。最后,采用了一种2.5D分割技术,其中使用伪RGB图像对体积图像的切片进行分割。该流程被应用于在T1加权脑磁共振图像中分割颈动脉树。利用来自四个数据集的42个体积非增强T1加权脑部扫描,我们在轴向切片中勾勒出颈动脉周围的边界框。从这些切片生成伪RGB图像,并使用基于Res-Unet的神经网络架构进行递归分割。该模型的性能在一个单独的数据集上进行了测试,由放射科医生提供了真实标注。经过递归训练后,我们在未见过的数据集上实现了交并比(IoU)分数为(0.68±0.08),展示了值得称赞的定性结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验