Suppr超能文献

一种用于T1加权脑磁共振图像中颈动脉分割的2.5D自训练策略

A 2.5D Self-Training Strategy for Carotid Artery Segmentation in T1-Weighted Brain Magnetic Resonance Images.

作者信息

de Araújo Adriel Silva, Pinho Márcio Sarroglia, Marques da Silva Ana Maria, Fiorentini Luis Felipe, Becker Jefferson

机构信息

School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, Brazil.

Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil.

出版信息

J Imaging. 2024 Jul 3;10(7):161. doi: 10.3390/jimaging10070161.

Abstract

Precise annotations for large medical image datasets can be time-consuming. Additionally, when dealing with volumetric regions of interest, it is typical to apply segmentation techniques on 2D slices, compromising important information for accurately segmenting 3D structures. This study presents a deep learning pipeline that simultaneously tackles both challenges. Firstly, to streamline the annotation process, we employ a semi-automatic segmentation approach using bounding boxes as masks, which is less time-consuming than pixel-level delineation. Subsequently, recursive self-training is utilized to enhance annotation quality. Finally, a 2.5D segmentation technique is adopted, wherein a slice of a volumetric image is segmented using a pseudo-RGB image. The pipeline was applied to segment the carotid artery tree in T1-weighted brain magnetic resonance images. Utilizing 42 volumetric non-contrast T1-weighted brain scans from four datasets, we delineated bounding boxes around the carotid arteries in the axial slices. Pseudo-RGB images were generated from these slices, and recursive segmentation was conducted using a Res-Unet-based neural network architecture. The model's performance was tested on a separate dataset, with ground truth annotations provided by a radiologist. After recursive training, we achieved an Intersection over Union (IoU) score of (0.68 ± 0.08) on the unseen dataset, demonstrating commendable qualitative results.

摘要

对大型医学图像数据集进行精确标注可能非常耗时。此外,在处理感兴趣的体积区域时,通常会在二维切片上应用分割技术,这会损失用于准确分割三维结构的重要信息。本研究提出了一种深度学习流程,可同时应对这两个挑战。首先,为了简化标注过程,我们采用了一种半自动分割方法,使用边界框作为掩码,这比像素级描绘耗时更少。随后,利用递归自训练来提高标注质量。最后,采用了一种2.5D分割技术,其中使用伪RGB图像对体积图像的切片进行分割。该流程被应用于在T1加权脑磁共振图像中分割颈动脉树。利用来自四个数据集的42个体积非增强T1加权脑部扫描,我们在轴向切片中勾勒出颈动脉周围的边界框。从这些切片生成伪RGB图像,并使用基于Res-Unet的神经网络架构进行递归分割。该模型的性能在一个单独的数据集上进行了测试,由放射科医生提供了真实标注。经过递归训练后,我们在未见过的数据集上实现了交并比(IoU)分数为(0.68±0.08),展示了值得称赞的定性结果。

相似文献

2
Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation.
J Magn Reson Imaging. 2024 Oct;60(4):1604-1614. doi: 10.1002/jmri.29194. Epub 2023 Dec 29.
3
3D Image Segmentation With Sparse Annotation by Self-Training and Internal Registration.
IEEE J Biomed Health Inform. 2021 Jul;25(7):2665-2672. doi: 10.1109/JBHI.2020.3038847. Epub 2021 Jul 27.
5
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
IEEE J Transl Eng Health Med. 2022 May 23;10:1800508. doi: 10.1109/JTEHM.2022.3176737. eCollection 2022.
7
Fast, light, and scalable: harnessing data-mined line annotations for automated tumor segmentation on brain MRI.
Eur Radiol. 2023 Sep;33(9):6582-6591. doi: 10.1007/s00330-023-09583-3. Epub 2023 Apr 12.
8
Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI.
J Magn Reson Imaging. 2020 Feb;51(2):635-643. doi: 10.1002/jmri.26860. Epub 2019 Jul 13.
9
Light mixed-supervised segmentation for 3D medical image data.
Med Phys. 2024 Jan;51(1):167-178. doi: 10.1002/mp.16816. Epub 2023 Nov 1.
10
An improved 3D-UNet-based brain hippocampus segmentation model based on MR images.
BMC Med Imaging. 2024 Jul 5;24(1):166. doi: 10.1186/s12880-024-01346-w.

引用本文的文献

1
MHAHF-UNet: a multi-scale hybrid attention hierarchy fusion network for carotid artery segmentation.
Int J Comput Assist Radiol Surg. 2025 Jun 17. doi: 10.1007/s11548-025-03449-3.
2
3D-NASE: A Novel 3D CT Nasal Attention-Based Segmentation Ensemble.
J Imaging. 2025 May 7;11(5):148. doi: 10.3390/jimaging11050148.
4
Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation.
J Imaging. 2025 Jan 12;11(1):19. doi: 10.3390/jimaging11010019.

本文引用的文献

1
Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm.
Front Cardiovasc Med. 2023 Feb 24;10:1101765. doi: 10.3389/fcvm.2023.1101765. eCollection 2023.
2
Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation.
Bioengineering (Basel). 2023 Feb 1;10(2):181. doi: 10.3390/bioengineering10020181.
3
Intracranial Vessel Segmentation in 3D High-Resolution T1 Black-Blood MRI.
AJNR Am J Neuroradiol. 2022 Dec;43(12):1719-1721. doi: 10.3174/ajnr.A7700. Epub 2022 Nov 3.
4
Towards a guideline for evaluation metrics in medical image segmentation.
BMC Res Notes. 2022 Jun 20;15(1):210. doi: 10.1186/s13104-022-06096-y.
5
Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images.
Front Neurosci. 2022 Jun 1;16:888814. doi: 10.3389/fnins.2022.888814. eCollection 2022.
6
Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives.
J Digit Imaging. 2022 Oct;35(5):1111-1119. doi: 10.1007/s10278-022-00629-4. Epub 2022 Apr 26.
8
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
10
Deep Learning for Automated Delineation of Pediatric Cerebral Arteries on Pre-operative Brain Magnetic Resonance Imaging.
Front Surg. 2020 Oct 26;7:517375. doi: 10.3389/fsurg.2020.517375. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验